8-189 An insulated rigid tank is connected to a piston-cylinder device with zero clearance that is maintained at constant pressure. A valve is opened, and some steam in the tank is allowed to flow into the cylinder. The final temperatures in the tank and the cylinder are to be determined.

Assumptions 1 Both the tank and cylinder are well-insulated and thus heat transfer is negligible. 2 The water that remains in the tank underwent a reversible adiabatic process. 3 The thermal energy stored in the tank and cylinder themselves is negligible. 4 The system is stationary and thus kinetic and potential energy changes are negligible.

Analysis (a) The steam in tank A undergoes a reversible, adiabatic process, and thus $s_{2}=s_{1}$. From the steam tables (Tables A-4 through A-6),

$$
\begin{aligned}
& \left.\begin{array}{l}
P_{1}=500 \mathrm{kPa} \\
\text { sat.vapor }
\end{array}\right\} \begin{array}{c}
\boldsymbol{v}_{1}=v_{g @ 500 \mathrm{kPa}}=0.37483 \mathrm{~m}^{3} / \mathrm{kg} \\
u_{1}=u_{g @ 500 \mathrm{kPa}}=2560.7 \mathrm{~kJ} / \mathrm{kg} \\
s_{1}=s_{g @ 500 \mathrm{kPa}}=6.8207 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{array} \\
& \begin{array}{c}
T_{2, A}=T_{\text {sat } @ 150 \mathrm{kPa}}=111.35^{\circ} \mathbf{C}
\end{array} \\
& \left.\begin{array}{c}
x_{2, A}=\frac{s_{2, A}-s_{f}}{s_{f g}}=\frac{6.8207-1.4337}{5.7894}=0.9305 \\
\begin{array}{l}
P_{2}=150 \mathrm{kPa} \\
s_{2}=s_{1} \\
\text { (sat.mixture })
\end{array}
\end{array}\right\} \begin{array}{c}
\boldsymbol{v}_{2, A}=\boldsymbol{v}_{f}+x_{2, A} \boldsymbol{v}_{f g}=0.001053+(0.9305)(1.1594-0.001053)=1.0789 \mathrm{~m}^{3} / \mathrm{kg} \\
u_{2, A}=u_{f}+x_{2, A} u_{f g}=466.97+(0.9305)(2052.3 \mathrm{~kJ} / \mathrm{kg})=2376.6 \mathrm{~kJ} / \mathrm{kg}
\end{array}
\end{aligned}
$$

The initial and the final masses in tank A are

$$
m_{1, A}=\frac{\boldsymbol{V}_{A}}{\boldsymbol{V}_{1, A}}=\frac{0.4 \mathrm{~m}^{3}}{0.37483 \mathrm{~m}^{3} / \mathrm{kg}}=1.067 \mathrm{~kg} \quad \text { and } \quad m_{2, A}=\frac{\boldsymbol{V}_{A}}{\boldsymbol{V}_{2, A}}=\frac{0.4 \mathrm{~m}^{3}}{1.0789 \mathrm{~m}^{3} / \mathrm{kg}}=0.371 \mathrm{~kg}
$$

Thus,

$$
m_{2, B}=m_{1, A}-m_{2, A}=1.067-0.371=0.696 \mathrm{~kg}
$$

(b) The boundary work done during this process is

$$
W_{b, \text { out }}=\int_{1}^{2} P d \boldsymbol{V}=P_{B}\left(\boldsymbol{V}_{2, B}-0\right)=P_{B} m_{2, B} \boldsymbol{V}_{2, B}
$$

Taking the contents of both the tank and the cylinder to be the system, the energy balance for this closed system can be expressed as

$$
\begin{gathered}
\underbrace{E_{\text {in }}-E_{\text {out }}}_{\begin{array}{c}
\text { Net energy transfer } \\
\text { by heat, work, and mass }
\end{array}}=\underbrace{\Delta E_{\text {system }}}_{\begin{array}{c}
\text { Change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}} \\
-W_{\mathrm{b}, \text { out }}=\Delta U=(\Delta U)_{A}+(\Delta U)_{B} \\
W_{\mathrm{b}, \text { out }}+(\Delta U)_{A}+(\Delta U)_{B}=0 \\
\text { or, } \quad P_{B} m_{2, B} \boldsymbol{U}_{2, B}+\left(m_{2} u_{2}-m_{1} u_{1}\right)_{A}+\left(m_{2} u_{2}\right)_{B}=0 \\
m_{2, B} h_{2, B}+\left(m_{2} u_{2}-m_{1} u_{1}\right)_{A}=0
\end{gathered}
$$

Thus,

$$
h_{2, B}=\frac{\left(m_{1} u_{1}-m_{2} u_{2}\right)_{A}}{m_{2, B}}=\frac{(1.067)(2560.7)-(0.371)(2376.6)}{0.696}=2658.8 \mathrm{~kJ} / \mathrm{kg}
$$

At $150 \mathrm{kPa}, h_{f}=467.13$ and $h_{g}=2693.1 \mathrm{~kJ} / \mathrm{kg}$. Thus at the final state, the cylinder will contain a saturated liquid-vapor mixture since $h_{f}<h_{2}<h_{g}$. Therefore,

$$
T_{2, B}=T_{\text {sat } @ 150 \mathrm{kPa}}=\mathbf{1 1 1 . 3 5}^{\circ} \mathbf{C}
$$

