8-52 R-134a undergoes an isothermal process in a closed system. The work and heat transfer are to be determined.

Assumptions 1 The system is stationary and thus the kinetic and potential energy changes are zero. 2 There are no work interactions involved other than the boundary work. $\mathbf{3}$ The thermal energy stored in the cylinder itself is negligible. 4 The compression or expansion process is quasi-equilibrium.

Analysis The energy balance for this system can be expressed as

$$
\begin{gathered}
\underbrace{E_{\text {in }}-E_{\text {out }}}_{\begin{array}{c}
\text { Net energy transfer } \\
\text { by heat, work, and mass }
\end{array}}=\underbrace{\Delta E_{\text {system }}}_{\begin{array}{c}
\text { Change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}} \\
W_{\text {in }}-Q_{\text {out }}=\Delta U=m\left(u_{2}-u_{1}\right)
\end{gathered}
$$

The initial state properties are

$$
\left.\begin{array}{l}
P_{1}=240 \mathrm{kPa} \\
T_{1}=20^{\circ} \mathrm{C}
\end{array}\right\} \begin{aligned}
& u_{1}=246.74 \mathrm{~kJ} / \mathrm{kg} \\
& s_{1}=1.0134 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}(\text { Table A }-13)
$$

For this isothermal process, the final state properties are (Table A-11)

$$
\left.\begin{array}{l}
T_{2}=T_{1}=20^{\circ} \mathrm{C} \\
x_{2}=0.20
\end{array}\right\} \begin{aligned}
& u_{2}=u_{f}+x_{2} u_{f g}=78.86+(0.20)(162.16)=111.29 \mathrm{~kJ} / \mathrm{kg} \\
& s_{2}=s_{f}+x_{2} s_{f g}=0.30063+(0.20)(0.62172)=0.42497 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

The heat transfer is determined from

$$
q_{\mathrm{in}}=T_{0}\left(s_{2}-s_{1}\right)=(293 \mathrm{~K})(0.42497-1.0134) \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}=-172.4 \mathrm{~kJ} / \mathrm{kg}
$$

The negative sign shows that the heat is actually transferred from the system. That is,

$$
q_{\text {out }}=172.4 \mathrm{~kJ} / \mathrm{kg}
$$

The work required is determined from the energy balance to be

$$
w_{\text {in }}=q_{\text {out }}+\left(u_{2}-u_{1}\right)=172.4 \mathrm{~kJ} / \mathrm{kg}+(111.29-246.74) \mathrm{kJ} / \mathrm{kg}=36.95 \mathbf{k J} / \mathbf{k g}
$$

8-53 The total heat transfer for the process 1-3 shown in the figure is to be determined.
Analysis For a reversible process, the area under the process line in T-s diagram is equal to the heat transfer during that process. Then,

$$
\begin{aligned}
Q_{1-3} & =Q_{1-2}+Q_{2-3} \\
& =\int_{1}^{2} T d S+\int_{2}^{3} T d S \\
& =\frac{T_{1}+T_{2}}{2}\left(S_{2}-S_{1}\right)+T_{2}\left(S_{3}-S_{2}\right) \\
& =\frac{(360+273)+(55+273) \mathrm{K}}{2}(3-1) \mathrm{kJ} / \mathrm{K}+(360+273 \mathrm{~K})(2-3) \mathrm{kJ} / \mathrm{K} \\
& =\mathbf{3 2 8} \mathbf{~ k J}
\end{aligned}
$$

