ENSC 388 Week #10, Tutorial #8 – Transient Conduction

Problem

A new process for treatment of a special material is to be evaluated. The material, a sphere of radius $r_o = 5mm$, is initially in equilibrium at $400^{\circ}C$ in a furnace. It is suddenly removed from the furnace and subjected to a two-step cooling process.

Step 1 Cooling in air at 20°C for a period of time t_a until the center temperature reaches a critical value, $T_a(0,t_a)=335^{\circ}C$. For this situation, the convective heat transfer coefficient is $h_a = 10 \ W/m^2$.K.

After the sphere has reached this critical temperature, the second step is initiated.

Step 2 Cooling in a well-stirred water bath at 20°C, with a convective heat transfer coefficient of $h_w = 6000 W/m^2 K$.

The thermophysical properties of the material are $\rho = 3000 \text{ kg/m}^3$, k=20 W/m.K, c=1000 J/kg.K, and $\alpha = 6.66 \times 10^{-6} \text{ m}^2/\text{s}$.

- 1. Calculate the time t_a required for step 1 of the cooling process to be completed.
- 2. Calculate the time t_w required during step 2 of the process for the center of the sphere to cool from $335^{\circ}C$ (the condition at the completion of step 1) to $50^{\circ}C$.

Step 2

Solution

Known: Temperature requirements for cooling a sphere.

Find:

- 1. Time t_a required to accomplish desired cooling in air.
- 2. Time t_w required to complete cooling in water bath.

Assumptions:

- 1. One-dimensional conduction in *r*.
- 2. Constant properties.

Analysis:

1. To determine whether the lumped capacitance method can be used, the Biot number is calculated. From Equation (11-9), with $L_c = r_o/3$,

$$Bi = \frac{h_a r_o}{3k} = \frac{10 W/m^2 . K \times 0.005 m}{3 \times 20 W/m . K} = 8.33 \times 10^{-4}$$

Accordingly, the lumped capacitance method may be used, and the temperature is nearly uniform throughout the sphere. From Equation (11-3) it follows that

$$t_a = \frac{\rho V c}{h_a A_s} \ln \frac{\theta_i}{\theta_a} = \frac{\rho r_o c}{3h_a} \ln \frac{T_i - T_\infty}{T_a - T_\infty}$$
 Eq. (1)

where $V=(4/3)\pi r_o^3$ and $A_s=4\pi r_o^2$. Hence

$$t_a = \frac{3000 \, kg/m^3 \times 0.005m \times 1000 \, J/kg \, .K}{3 \times 10 \, W/m^2 \, .K} \ln \frac{400 - 20}{335 - 20} = 94 \, s$$

2. To determine whether the lumped capacitance method may also be used for the second step of the cooling process, the Biot number is again calculated. In this case

$$Bi = \frac{h_w r_o}{3k} = \frac{6000 \ W/m^2 \ . K \times 0.005 \ m}{3 \times 20 \ W/m \ . K} = 0.50$$

And the lumped capacitance method is not appropriate. However, to an excellent approximation, the temperature of the sphere is uniform at $t = t_a$ and the one-term approximation may be used for the calculations from $t = t_a$ to $t = t_a + t_w$. The time at which the center temperature reaches $50^{\circ}C$, that is, $T(0,t_w)=50^{\circ}C$, can be obtained by rearranging Equation (11-28)

$$Fo = -\frac{1}{\lambda_1^2} ln \left[\frac{\theta_o^*}{A_1} \right] = -\frac{1}{\lambda_1^2} ln \left[\frac{1}{A_1} \times \frac{T(0, t_w) - T_{\infty}}{T_i - T_{\infty}} \right]$$
 Eq. (2)

where $t_w = For_o^2/\alpha$. With the Biot number now defined as

$$Bi = \frac{h_w r_o}{k} = \frac{6000 \, W/m^2 \, . \, K \times 0.005 \, m}{20 \, W/m \, . \, K} = 1.5$$

Table 11-2 yields $A_1 = 1.376$ and $\lambda_1 = 1.800$ rad. It follows that

$$Fo = -\frac{1}{(1.800 \, rad)^2} ln \left[\frac{1}{1.376} \times \frac{(50 - 20)^{\circ} C}{(335 - 20)^{\circ} C} \right] = 0.82$$

and

$$t_w = Fo \frac{r_o^2}{\alpha} = 0.82 \frac{(0.005 \ m)^2}{6.66 \times \frac{10^{-6} m^2}{s}} = 3.1 \ s$$

Note that, with Fo = 0.82, use of the one-term approximation is justified. **Comments:**

- 1. If the temperature distribution in the sphere at the conclusion of step 1 were not uniform, the one-term approximation could not be used for the calculations of step 2.
- 2. The surface temperature of the sphere at the conclusion of step 2 may be obtained from Equation (11-29). With $\theta_o^* = 0.095$ and $r^* = 1$,

$$\theta^*(r_o) = \frac{T(r_o) - T_{\infty}}{T_i - T_{\infty}} = \frac{0.095}{1.800 \, rad} \sin(1.800 \, rad) = 0.0514$$

and

$$T(r_o) = 20^{\circ}\text{C} + 0.0514(335 - 20)^{\circ}\text{C} = 36^{\circ}\text{C}$$

The infinite series, in Table 11-1 for sphere, and its one-term approximation, Equation (11-29), may be used to compute the temperature at any location in the sphere and at any time $t > t_a$. For $(t - t_a) < 0.2(0.005 \text{ m})^2/6.66 \times 10^{-6} \text{ m}^2/\text{s} = 0.75 \text{ s}$, a sufficient number of terms must be retained to ensure convergence of the series. For $(t - t_a) > 0.75 \text{ s}$, satisfactory convergence is provided by the one-term approximation.

3. The Heisler charts could also be used to analyze the step 2 process. With $Bi^{-1} = 0.67$ and $\theta_o^* = 0.095$, Figure 11-17(a) yields $Fo \approx 0.8$, in which case $t_w \approx 3.0$ s. From Figure 11-17(b), with $r^* = 1$, $\theta(r_o)/\theta_o \approx 0.52$, in which case $T(r_o) \approx 20^\circ C + 0.52(50-20)^\circ C \approx 36^\circ C$.