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Exergy 

Exergy is the theoretical limit for the work potential that can be obtained from a source or 
a system at a given state when interacting with a reference (environment) at a constant 
condition. 

A system is said to be in the dead state when it is in thermodynamic equilibrium with its 
environment. Unless otherwise stated, assume the dead state to be: 

P0 = 1 atm    and T0 = 25°C 

A system delivers the maximum possible work as it undergoes a reversible process from 
the specified initial state to the state of its environment (dead state). This represents the 
useful work potential, or exergy, or availability.  

Exergy is a property of the system-environment combination (not the system alone). 

Exergy of Kinetic Energy 

Kinetic energy can be converted to work entirely; thus: 
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where V is the velocity of the system relative to the environment. 

Exergy of Potential Energy 

Potential energy is also a form of mechanical energy and can be converted to work 
entirely; thus: 

 kgkJgzpexPE /  

Some Definitions 

Surroundings work: is the work done by or against the surroundings during a process. 
This work cannot be recovered and utilized. For a cylinder-piston assembly, one can 
write: 

 120 VVPWsurr   

The difference between the actual work W and the surroundings work Wsurr is called the 
useful Wu: 

Wu = W – Wsurr = W - P0 (V2 – V1) 

Reversible Work: Wrev is the max amount of useful work that can be produced (or the min 
work needs to be supplied) as the system undergoes a process between the initial and 
final states. When the final state is the dead state, the reversible work equals exergy. 

Irreversibility: I is equal to the exergy destroyed; thus for a reversible process the 
irreversibility or exergy destruction is zero. 

I = Wrev,out – Wu,out    
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or,       

I = Wu,in – Wrev,in 

Example 1 

A 500-kg iron block is initially at 200°C and is allowed to cool to 27°C by transferring 
heat to the surroundings air at 27°C.  

Determine the reversible work and the irreversibility for this process. 

Assumption: 

1) the kinetic potential energies are negligible. 

2) the process involves no work interactions. 

Analysis: 

The reversible work is determined by considering a series of imaginary reversible heat 
engines operating between the source (at a variable temperature T) and the sink T0. 
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Using the first law for the iron block, a relationship for the heat transfer can be found: 
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The reversible net work is determined to be: 
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Note that the first term in the above equation, mcave (T1 – T0) = 38,925 kJ, is the total heat 
transfer from the iron block to the engine. This means that only 21% of the heat 
transferred from the iron block could have been converted to work. 

The irreversibility for the process is determined from: 

I = Wrev – Wu = 8191 – 0 = 8191 kJ 

The entire work potential is wasted. 

The Second Law Efficiency 

The second law efficiency, ηII is the ratio of actual thermal efficiency to the maximum 
possible (reversible) thermal efficiency under the same conditions: 
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The second law efficiency serves as a measure of approximation to reversible operation; 
thus its value should range from 0 to 1. 

  

 

Exergy of A Fixed Mass 

Consider a stationary cylinder-piston assembly that contains a fluid of mass m at T, P, U, 
and S. The system is allowed to undergo a differential change. 

The energy balance for the system during this differential process can be expressed as: 

dUWQ       (1) 

The system involves some boundary work: 

  dVPWdVPdVPPPdVW usefulb 0,00     (2) 

For a system, which is at temperature T, to have a reversible heat transfer with the 
surroundings at T0, heat transfer must occur through a reversible heat engine (ηth = 1 – 
TL/TH). For the reversible heat engine, one can write: 

HEAT 
ENGINE 1 
ηth = 35% 

HEAT 
ENGINE 2 
ηth = 35% 

Sink T = 300K 

Ts,1 = 600 K 
Ts,2 = 1100 K 

Wnet,1 Wnet,2 

ηrev = 50% 
ηII = 70% 

ηrev = 73% 
ηII = 48% 
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Using Eqs. (1), (2), and (3); one can find: 
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Integrating from initial state to dead state gives: 
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where Wtotal,useful is the total useful work delivered as the system undergoes a reversible 
process from the given state to the dead state which is the exergy of the system. Total 
exergy for a closed system including the potential and kinetic energies can be written as: 
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where subscript 0 denotes the state of the system at the dead state. 
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Exergy of a Flow Stream 

A flowing fluid has flow energy; that is the energy needed to maintain flow in a pipe or 
line; 

wflow = Pv 

The flow work is the boundary work done by a fluid on the fluid downstream. The exergy 
associated with flow energy can be written as 

xflow = PV – P0V = (P – P0) V 

The exergy of a flow stream can be found from: 

xflowing fluid = xnonflowing fluid + x flow 

xflowing fluid =(u – u0) + P0(V – V0) – T0(s – s0) + V2/2 +gz + (P - P0)V 

where V is the velocity of the system and V is the volume. 

xflowing fluid = (u + PV) – ( u0 – P0 V0) – T0(s – s0) + V2/2 +gz 

xflowing fluid = ψ = (h – h0) – T0(s – s0) + V2/2 +gz 

The flow exergy is represented by symbol ψ. 

Exergy by Heat Transfer 

Heat is a form of disorganized energy, thus only a portion of it can be converted to work. 
Heat transfer Q at a location at thermodynamic temperature T is accompanied by exergy 
transfer: 
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If the temperature of the heat source is changing with time, use: 
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Exergy Transfer by Work 
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where Wsurr = P0 (V2 – V1). Therefore the exergy transfer with work such as shaft work 
and electrical work is equal to the work W. 

Note that the work done or against atmosphere is not available for any useful purpose, 
and should be excluded from available work. 

The Decrease of Exergy Principle  

Entropy and exergy for an isolated closed system can be related through an energy 
balance and entropy balance as follows: 
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1) Energy balance: 

Ein – Eout = ∆E → 0 = E2 – E1   (1)  

2) Entropy balance: 

Sin – Sout + Sgen = ∆Ssystem →Sgen = S2 – S1   (2) 

Multiplying Eq. (2) by T0 and subtracting it from Eq. (1), one finds: 

-T0 Sgen = E2 – E1 –T0 (S2 – S1) 

For a closed system, we know that: 
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since V2 = V1 for an isolated system. Combining these two equations gives: 

- T0 Sgen = X2 – X1 ≤ 0 

Since T0 is a positive value, we have:  

∆Xisolated = (X2 – X1)isolated ≤ 0 

The exergy of an isolated system during a process always decreases or, in the limiting 
case of a reversible process, remains constant. 

Irreversibilities such as friction, mixing, chemical reaction, heat transfer, unrestrained 
expansion always generate entropy (or destroy exergy). 

Xdestroyed = T0 Sgen ≥ 0 

Exergy destruction cannot be negative. The decrease of exergy principle can also be 
expressed as: 
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Exergy Balance: Closed System 

Xin – Xout – Xdestroyed = ∆Xsystem 

where; Xdestroyed = T0 Sgen 

For a closed system that does not involve any mass flow. The exergy balance can be 
written as: 
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or in the rate form: 
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Exergy Balance: Control Volumes 

Exergy balance relations for control volumes involve mass flow across the boundaries. 
The general exergy balance relationship can be expressed as: 

Xheat – Xwork + Xmass,in – Xmass,out – Xdestroyed = (X2 – X1)CV 

Or, 
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in the rate form: 
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where the initial and final states of the control volume are specified , the exergy change 
of the control volume is: 

112212  mmXX   

Steady-flow devices such as: turbines, compressors, nozzles, diffusers, heat exchangers, 
pipes, and ducts do not experience no changes in their mass, energy, entropy, and exergy 
content as well as their volumes. Therefore: 

dVCV/dt = 0 

and  

dXCV/dt = 0 

Thus, one can write: 
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