13-72 Heat is transferred to a gas mixture contained in a piston cylinder device. The initial state and the final temperature are given. The heat transfer is to be determined for the ideal gas and non-ideal gas cases.
Properties The molar masses of H_{2} and N_{2} are 2.0 , and $28.0 \mathrm{~kg} / \mathrm{kmol}$. (Table A-1).
Analysis From the energy balance relation,

$$
\begin{aligned}
E_{\text {in }}-E_{\text {out }} & =\Delta E \\
Q_{\text {in }}-W_{b, \text { out }} & =\Delta U \\
Q_{\text {in }} & =\Delta H=\Delta H_{\mathrm{H}_{2}}+\Delta H_{\mathrm{N}_{2}}=N_{\mathrm{H}_{2}}\left(\bar{h}_{2}-\bar{h}_{1}\right)_{\mathrm{H}_{2}}+N_{\mathrm{N}_{2}}\left(\bar{h}_{2}-\bar{h}_{1}\right)_{\mathrm{N}_{2}}
\end{aligned}
$$

since W_{b} and ΔU combine into ΔH for quasi-equilibrium constant pressure processes

$$
\begin{aligned}
& N_{\mathrm{H}_{2}}=\frac{m_{\mathrm{H}_{2}}}{M_{\mathrm{H}_{2}}}=\frac{6 \mathrm{~kg}}{2 \mathrm{~kg} / \mathrm{kmol}}=3 \mathrm{kmol} \\
& N_{\mathrm{N}_{2}}=\frac{m_{\mathrm{N}_{2}}}{M_{\mathrm{N}_{2}}}=\frac{21 \mathrm{~kg}}{28 \mathrm{~kg} / \mathrm{kmol}}=0.75 \mathrm{kmol}
\end{aligned}
$$

(a) Assuming ideal gas behavior, the inlet and exit enthalpies of H_{2} and N_{2} are determined from the ideal gas tables to be

$$
\begin{array}{lll}
H_{2}: & \bar{h}_{1}=\bar{h}_{@ 160 \mathrm{~K}}=4,535.4 \mathrm{~kJ} / \mathrm{kmol}, & \bar{h}_{2}=\bar{h}_{@ 200 \mathrm{~K}}=5,669.2 \mathrm{~kJ} / \mathrm{kmol} \\
N_{2}: & \bar{h}_{1}=\bar{h}_{@ 160 \mathrm{~K}}=4,648 \mathrm{~kJ} / \mathrm{kmol}, & \bar{h}_{2}=\bar{h}_{@ 200 \mathrm{~K}}=5,810 \mathrm{~kJ} / \mathrm{kmol}
\end{array}
$$

Thus, $\quad Q_{\text {ideal }}=3 \times(5,669.2-4,535.4)+0.75 \times(5,810-4,648)=4273 \mathbf{k J}$
(b) Using Amagat's law and the generalized enthalpy departure chart, the enthalpy change of each gas is determined to be
$\left.\begin{array}{c}T_{R_{1}, \mathrm{H}_{2}}=\frac{T_{m, 1}}{T_{\mathrm{cr}, \mathrm{H}_{2}}}=\frac{160}{33.3}=4.805 \\ \mathrm{H}_{2}: \quad P_{R_{1}, \mathrm{H}_{2}}=P_{R_{2}, \mathrm{H}_{2}}=\frac{P_{m}}{P_{\mathrm{cr}, \mathrm{H}_{2}}}=\frac{5}{1.30}=3.846 \\ T_{R_{2}, \mathrm{H}_{2}}=\frac{T_{m, 2}}{T_{\mathrm{cr}, \mathrm{H}_{2}}}=\frac{200}{33.3}=6.006\end{array}\right\} \begin{aligned} & Z_{h_{1}} \cong 0 \\ & Z_{h_{2}} \cong 0\end{aligned}$
Thus H_{2} can be treated as an ideal gas during this process.

$$
\left.\begin{array}{c}
T_{R_{1}, \mathrm{~N}_{2}}=\frac{T_{m, 1}}{T_{\mathrm{cr}, \mathrm{~N}_{2}}}=\frac{160}{126.2}=1.27 \tag{Fig.A-29}\\
\mathrm{~N}_{2}: \quad P_{R_{1}, \mathrm{~N}_{2}}=P_{R_{2}, \mathrm{~N}_{2}}=\frac{P_{m}}{P_{\mathrm{cr}, \mathrm{~N}_{2}}}=\frac{5}{3.39}=1.47 \\
T_{R_{2}, \mathrm{~N}_{2}}=\frac{T_{m, 2}}{T_{\mathrm{cr}, \mathrm{~N}_{2}}}=\frac{200}{126.2}=1.58
\end{array}\right\} Z_{h_{h_{1}}=1.3}
$$

Therefore,

$$
\begin{aligned}
\left(\bar{h}_{2}-\bar{h}_{1}\right)_{\mathrm{H}_{2}} & =\left(\bar{h}_{2}-\bar{h}_{1}\right)_{\mathrm{H}_{2}, \text { ideal }}=5,669.2-4,535.4=1,133.8 \mathrm{~kJ} / \mathrm{kmol} \\
\left(\bar{h}_{2}-\bar{h}_{1}\right)_{\mathrm{N}_{2}} & =R_{u} T_{c r}\left(Z_{h_{1}}-Z_{h_{2}}\right)+\left(\bar{h}_{2}-\bar{h}_{1}\right)_{\text {ideal }} \\
& =\left(8.314 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kmol} \cdot \mathrm{~K}\right)(126.2 \mathrm{~K})(1.3-0.7)+(5,810-4,648) \mathrm{kJ} / \mathrm{kmol}=1,791.5 \mathrm{~kJ} / \mathrm{kmol}
\end{aligned}
$$

Substituting,

$$
Q_{\mathrm{in}}=(3 \mathrm{kmol})(1,133.8 \mathrm{~kJ} / \mathrm{kmol})+(0.75 \mathrm{kmol})(1,791.5 \mathrm{~kJ} / \mathrm{kmol})=4745 \mathrm{~kJ}
$$

