9-24 An air-standard cycle executed in a piston-cylinder system is composed of three specified processes. The cycle is to be sketcehed on the $P$ - vand $T$-s diagrams; the heat and work interactions and the thermal efficiency of the cycle are to be determined; and an expression for thermal efficiency as functions of compression ratio and specific heat ratio is to be obtained.

Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats.

Properties The properties of air are given as $R=0.3 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ and $c_{v}=0.3 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$.
Analysis (a) The $P-\boldsymbol{v}$ and $T$-s diagrams of the cycle are shown in the figures.
(b) Noting that

$$
\begin{aligned}
c_{p} & =c_{v}+R=0.7+0.3=1.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
k & =\frac{c_{p}}{c_{v}}=\frac{1.0}{0.7}=1.429
\end{aligned}
$$

Process 1-2: Isentropic compression

$$
\begin{aligned}
& T_{2}=T_{1}\left(\frac{\boldsymbol{v}_{1}}{\boldsymbol{v}_{2}}\right)^{k-1}=T_{1} r^{k-1}=(293 \mathrm{~K})(5)^{0.429}=584.4 \mathrm{~K} \\
& w_{1-2, \mathrm{in}}=c_{v}\left(T_{2}-T_{1}\right)=(0.7 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(584.4-293) \mathrm{K}=\mathbf{2 0 4 . 0} \mathbf{~ k J} / \mathbf{k g} \\
& q_{1-2}=\mathbf{0}
\end{aligned}
$$

From ideal gas relation,

$$
\frac{T_{3}}{T_{2}}=\frac{\boldsymbol{v}_{3}}{\boldsymbol{v}_{2}}=\frac{\boldsymbol{v}_{1}}{\boldsymbol{v}_{2}}=r \longrightarrow T_{3}=(584.4)(5)=2922
$$

Process 2-3: Constant pressure heat addition

$$
\begin{aligned}
w_{2-3, \text { out }} & =\int_{2}^{3} P d \boldsymbol{v}=P_{2}\left(\boldsymbol{v}_{3}-\boldsymbol{v}_{2}\right)=R\left(T_{3}-T_{2}\right) \\
& =(0.3 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(2922-584.4) \mathrm{K}=\mathbf{7 0 1 . 3} \mathbf{~ k J} / \mathbf{k g} \\
q_{2-3, \text { in }} & =w_{2-3, \text { out }}+\Delta u_{2-3}=\Delta h_{2-3} \\
& =c_{p}\left(T_{3}-T_{2}\right)=(1 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(2922-584.4) \mathrm{K}=\mathbf{2 3 3 8} \mathbf{~ k J} / \mathbf{k g}
\end{aligned}
$$

Process 3-1: Constant volume heat rejection

$$
\begin{aligned}
& q_{3-1, \text { out }}=\Delta u_{1-3}=c_{v}\left(T_{3}-T_{1}\right)=(0.7 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(2922-293) \mathrm{K}=\mathbf{1 8 4 0 . 3} \mathbf{~ k J} / \mathbf{k g} \\
& w_{3-1}=\mathbf{0}
\end{aligned}
$$

(c) Net work is

$$
w_{\text {net }}=w_{2-3, \text { out }}-w_{1-2, \text { in }}=701.3-204.0=497.3 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

The thermal efficiency is then

$$
\eta_{\mathrm{th}}=\frac{w_{\mathrm{net}}}{q_{\mathrm{in}}}=\frac{497.3 \mathrm{~kJ}}{2338 \mathrm{~kJ}}=0.213=\mathbf{2 1 . 3} \%
$$

(d) The expression for the cycle thermal efficiency is obtained as follows:

$$
\begin{aligned}
\eta_{\text {th }} & =\frac{w_{\text {net }}}{q_{\text {in }}}=\frac{w_{2-3, \text { out }}-w_{1-2, \text { in }}}{q_{\text {in }}} \\
& =\frac{R\left(T_{3}-T_{2}\right)-c_{v}\left(T_{2}-T_{1}\right)}{c_{p}\left(T_{3}-T_{2}\right)} \\
& =\frac{R}{c_{p}}-\frac{c_{v}\left(T_{1} r^{k-1}-T_{1}\right)}{c_{p}\left(r T_{1} r^{k-1}-T_{1} r^{k-1}\right)} \\
& =\frac{R}{c_{p}}-\frac{c_{v} T_{1} r^{k-1}\left(1-\frac{T_{1}}{T_{1} r^{k-1}}\right)}{c_{p} T_{1} r^{k-1}(r-1)} \\
& =\frac{R}{c_{p}}-\frac{1}{k(r-1)}\left(1-\frac{T_{1}}{T_{1} r^{k-1}}\right) \\
& =\frac{R}{c_{p}}-\frac{1}{k(r-1)}\left(1-\frac{1}{r^{k-1}}\right) \\
& =\left(1-\frac{1}{k}\right)-\frac{1}{k(r-1)}\left(1-\frac{1}{r^{k-1}}\right)
\end{aligned}
$$

since

$$
\frac{R}{c_{p}}=\frac{c_{p}-c_{v}}{c_{p}}=1-\frac{c_{v}}{c_{p}}=1-\frac{1}{k}
$$

