9-39 An ideal Otto cycle with air as the working fluid has a compression ratio of 9.5. The highest pressure and temperature in the cycle, the amount of heat transferred, the thermal efficiency, and the mean effective pressure are to be determined.
Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats.

Properties The properties of air at room temperature are $c_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}, c_{v}=0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}, R=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, and $k=1.4$ (Table A-2).
Analysis (a) Process 1-2: isentropic compression.

$$
\begin{aligned}
T_{2} & =T_{1}\left(\frac{\boldsymbol{v}_{1}}{\boldsymbol{v}_{2}}\right)^{k-1}=(308 \mathrm{~K})(9.5)^{0.4}=757.9 \mathrm{~K} \\
\frac{P_{2} \boldsymbol{v}_{2}}{T_{2}} & =\frac{P_{1} \boldsymbol{v}_{1}}{T_{1}} \longrightarrow P_{2}=\frac{\boldsymbol{v}_{1}}{\boldsymbol{v}_{2}} \frac{T_{2}}{T_{1}} P_{1}=(9.5)\left(\frac{757.9 \mathrm{~K}}{308 \mathrm{~K}}\right)(100 \mathrm{kPa})=2338 \mathrm{kPa}
\end{aligned}
$$



Process 3-4: isentropic expansion.

$$
T_{3}=T_{4}\left(\frac{\boldsymbol{v}_{4}}{\boldsymbol{v}_{3}}\right)^{k-1}=(800 \mathrm{~K})(9.5)^{0.4}=1969 \mathrm{~K}
$$

Process 2-3: $\boldsymbol{v}=$ constant heat addition.

$$
\frac{P_{3} \boldsymbol{v}_{3}}{T_{3}}=\frac{P_{2} \boldsymbol{v}_{2}}{T_{2}} \longrightarrow P_{3}=\frac{T_{3}}{T_{2}} P_{2}=\left(\frac{1969 \mathrm{~K}}{757.9 \mathrm{~K}}\right)(2338 \mathrm{kPa})=\mathbf{6 0 7 2} \mathbf{~ k P a}
$$

(b) $\quad m=\frac{P_{1} \boldsymbol{V}_{1}}{R T_{1}}=\frac{(100 \mathrm{kPa})\left(0.0006 \mathrm{~m}^{3}\right)}{\left(0.287 \mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kg} \cdot \mathrm{K}\right)(308 \mathrm{~K})}=6.788 \times 10^{-4} \mathrm{~kg}$

$$
Q_{\mathrm{in}}=m\left(u_{3}-u_{2}\right)=m c_{v}\left(T_{3}-T_{2}\right)=\left(6.788 \times 10^{-4} \mathrm{~kg}\right)(0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(1969-757.9) \mathrm{K}=\mathbf{0 . 5 9 0} \mathbf{~ k J}
$$

(c) Process 4-1: $\boldsymbol{v}=$ constant heat rejection.

$$
\begin{aligned}
& Q_{\text {out }}=m\left(u_{4}-u_{1}\right)=m c_{\nu}\left(T_{4}-T_{1}\right)=-\left(6.788 \times 10^{-4} \mathrm{~kg}\right)(0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(800-308) \mathrm{K}=0.240 \mathrm{~kJ} \\
& W_{\text {net }}=Q_{\text {in }}-Q_{\text {out }}=0.590-0.240=0.350 \mathrm{~kJ} \\
& \eta_{\text {th }}=\frac{W_{\text {net,out }}}{Q_{\text {in }}}=\frac{0.350 \mathrm{~kJ}}{0.590 \mathrm{~kJ}}=\mathbf{5 9 . 4 \%} \\
& (d) \quad \boldsymbol{V}_{\min }=\boldsymbol{V}_{2}=\frac{\boldsymbol{V}_{\max }}{r} \\
& \mathrm{MEP}=\frac{W_{\text {net,out }}}{\boldsymbol{V}_{1}-\boldsymbol{V}_{2}}=\frac{W_{\text {net,out }}}{\boldsymbol{V}_{1}(1-1 / r)}=\frac{0.350 \mathrm{~kJ}}{\left(0.0006 \mathrm{~m}^{3}\right)(1-1 / 9.5)}\left(\frac{\mathrm{kPa} \cdot \mathrm{~m}^{3}}{\mathrm{~kJ}}\right)=\mathbf{6 5 2} \mathbf{~ k P a}
\end{aligned}
$$

