9-54 An ideal dual cycle has a compression ratio of 14 and cutoff ratio of 1.2. The thermal efficiency, amount of heat added, and the maximum gas pressure and temperature are to be determined.

Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats.

Properties The properties of air at room temperature are $c_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}, c_{v}=0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}, R=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, and $k=1.4$ (Table A-2).
Analysis The specific volume of the air at the start of the compression is

$$
\boldsymbol{v}_{1}=\frac{R T_{1}}{P_{1}}=\frac{\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(253 \mathrm{~K})}{80 \mathrm{kPa}}=0.9076 \mathrm{~m}^{3} / \mathrm{kg}
$$

and the specific volume at the end of the compression is

$$
\boldsymbol{v}_{2}=\frac{\boldsymbol{v}_{1}}{r}=\frac{0.9076 \mathrm{~m}^{3} / \mathrm{kg}}{14}=0.06483 \mathrm{~m}^{3} / \mathrm{kg}
$$

The pressure at the end of the compression is

$$
P_{2}=P_{1}\left(\frac{\boldsymbol{v}_{1}}{\boldsymbol{v}_{2}}\right)^{k}=P_{1} r^{k}=(80 \mathrm{kPa})(14)^{1.4}=3219 \mathrm{kPa}
$$

and the maximum pressure is

$$
P_{x}=P_{3}=r_{p} P_{2}=(1.5)(3219 \mathrm{kPa})=\mathbf{4 8 2 9} \mathbf{~ k P a}
$$

The temperature at the end of the compression is

$$
T_{2}=T_{1}\left(\frac{\boldsymbol{v}_{1}}{\boldsymbol{v}_{2}}\right)^{k-1}=T_{1} r^{k-1}=(253 \mathrm{~K})(14)^{1.4-1}=727.1 \mathrm{~K}
$$

and $\quad T_{x}=T_{2}\left(\frac{P_{3}}{P_{2}}\right)=(727.1 \mathrm{~K})\left(\frac{4829 \mathrm{kPa}}{3219 \mathrm{kPa}}\right)=1091 \mathrm{~K}$
From the definition of cutoff ratio

$$
\boldsymbol{v}_{3}=r_{c} \boldsymbol{v}_{x}=r_{c} \boldsymbol{v}_{2}=(1.2)\left(0.06483 \mathrm{~m}^{3} / \mathrm{kg}\right)=0.07780 \mathrm{~m}^{3} / \mathrm{kg}
$$

The remaining state temperatures are then

$$
\begin{aligned}
& T_{3}=T_{x}\left(\frac{\boldsymbol{v}_{3}}{\boldsymbol{v}_{x}}\right)=(1091 \mathrm{~K})\left(\frac{0.07780}{0.06483}\right)=1309 \mathrm{~K} \\
& T_{4}=T_{3}\left(\frac{\boldsymbol{v}_{3}}{\boldsymbol{v}_{4}}\right)^{k-1}=(1309 \mathrm{~K})\left(\frac{0.07780}{0.9076}\right)^{1.4-1}=490.0 \mathrm{~K}
\end{aligned}
$$

Applying the first law and work expression to the heat addition processes gives

$$
\begin{aligned}
q_{\text {in }} & =c_{v}\left(T_{x}-T_{2}\right)+c_{p}\left(T_{3}-T_{x}\right) \\
& =(0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(1091-727.1) \mathrm{K}+(1.005 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(1309-1091) \mathrm{K} \\
& =\mathbf{4 8 0 . 4} \mathbf{~ k J} / \mathrm{kg}
\end{aligned}
$$

The heat rejected is

$$
q_{\text {out }}=c_{v}\left(T_{4}-T_{1}\right)=(0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(490.0-253) \mathrm{K}=170.2 \mathrm{~kJ} / \mathrm{kg}
$$

Then, $\quad \eta_{\text {th }}=1-\frac{q_{\text {out }}}{q_{\text {in }}}=1-\frac{170.2 \mathrm{~kJ} / \mathrm{kg}}{480.4 \mathrm{~kJ} / \mathrm{kg}}=\mathbf{0 . 6 4 6}$

