9-58 A diesel engine with air as the working fluid has a compression ratio of 20. The thermal efficiency and the mean effective pressure are to be determined.
Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats.
Properties The properties of air at room temperature are $c_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}, c_{v}=0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}, R=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, and $k=1.4$ (Table A-2).
Analysis (a) Process 1-2: isentropic compression.

$$
T_{2}=T_{1}\left(\frac{\boldsymbol{V}_{1}}{\boldsymbol{V}_{2}}\right)^{k-1}=(293 \mathrm{~K})(20)^{0.4}=971.1 \mathrm{~K}
$$

Process 2-3: $P=$ constant heat addition.

$$
\frac{P_{3} \boldsymbol{V}_{3}}{T_{3}}=\frac{P_{2} \boldsymbol{V}_{2}}{T_{2}} \longrightarrow \frac{\boldsymbol{V}_{3}}{\boldsymbol{V}_{2}}=\frac{T_{3}}{T_{2}}=\frac{2200 \mathrm{~K}}{971.1 \mathrm{~K}}=2.265
$$

Process 3-4: polytropic expansion.

$$
\begin{aligned}
T_{4} & =T_{3}\left(\frac{\boldsymbol{V}_{3}}{\boldsymbol{V}_{4}}\right)^{n-1}=T_{3}\left(\frac{2.265 \boldsymbol{V}_{2}}{\boldsymbol{V}_{4}}\right)^{\mathrm{n}-1}=T_{3}\left(\frac{2.265}{\mathrm{r}}\right)^{\mathrm{n}-1}=(2200 \mathrm{~K})\left(\frac{2.265}{20}\right)^{0.35}=1026 \mathrm{~K} \\
q_{\text {in }} & =h_{3}-h_{2}=c_{p}\left(T_{3}-T_{2}\right)=(1.005 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(2200-971.1) \mathrm{K}=1235 \mathrm{~kJ} / \mathrm{kg} \\
q_{\text {out }} & =u_{4}-u_{1}=c_{v}\left(T_{4}-T_{1}\right)=(0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(1026-293) \mathrm{K}=526.3 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Note that $\mathrm{q}_{\text {out }}$ in this case does not represent the entire heat rejected since some heat is also rejected during the polytropic process, which is determined from an energy balance on process 3-4:

$$
\begin{aligned}
w_{34, \text { out }} & =\frac{R\left(T_{4}-T_{3}\right)}{1-n}=\frac{(0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(1026-2200) \mathrm{K}}{1-1.35}=963 \mathrm{~kJ} / \mathrm{kg} \\
E_{\text {in }}-E_{\text {out }} & =\Delta E_{\text {system }} \\
q_{34, \text { in }}-w_{34, \text { out }} & =u_{4}-u_{3} \longrightarrow q_{34, \text { in }}
\end{aligned} \begin{aligned}
& w_{34, \text { out }}+c_{v}\left(T_{4}-T_{3}\right) \\
& =963 \mathrm{~kJ} / \mathrm{kg}+(0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(1026-2200) \mathrm{K} \\
& =120.1 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

which means that $120.1 \mathrm{~kJ} / \mathrm{kg}$ of heat is transferred to the combustion gases during the expansion process. This is unrealistic since the gas is at a much higher temperature than the surroundings, and a hot gas loses heat during polytropic expansion. The cause of this unrealistic result is the constant specific heat assumption. If we were to use u data from the air table, we would obtain

$$
q_{34, \mathrm{in}}=w_{34, \mathrm{out}}+\left(u_{4}-u_{3}\right)=963+(781.3-1872.4)=-128.1 \mathrm{~kJ} / \mathrm{kg}
$$

which is a heat loss as expected. Then $\mathrm{q}_{\text {out }}$ becomes

$$
q_{\text {out }}=q_{34, \text { out }}+q_{41, \text { out }}=128.1+526.3=654.4 \mathrm{~kJ} / \mathrm{kg}
$$

and
(b)
b)

$$
\begin{aligned}
& w_{\text {net, out }}=q_{\text {in }}-q_{\text {out }}=1235-654.4=580.6 \mathrm{~kJ} / \mathrm{kg} \\
& \eta_{\text {th }}=\frac{w_{\text {net,out }}}{q_{\text {in }}}=\frac{580.6 \mathrm{~kJ} / \mathrm{kg}}{1235 \mathrm{~kJ} / \mathrm{kg}}=\mathbf{4 7 . 0 \%} \\
& \boldsymbol{v}_{1}=\frac{R T_{1}}{P_{1}}=\frac{\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(293 \mathrm{~K})}{95 \mathrm{kPa}}=0.885 \mathrm{~m}^{3} / \mathrm{kg}=\boldsymbol{v}_{\max } \\
& \boldsymbol{v}_{\min }=\boldsymbol{v}_{2}=\frac{\boldsymbol{v}_{\text {max }}}{r} \\
& \mathrm{MEP}=\frac{w_{\text {net, out }}}{\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}=\frac{w_{\text {net,out }}}{\boldsymbol{v}_{1}(1-1 / r)}=\frac{580.6 \mathrm{~kJ} / \mathrm{kg}}{\left(0.885 \mathrm{~m}^{3} / \mathrm{kg}\right)(1-1 / 20)}\left(\frac{1 \mathrm{kPa} \cdot \mathrm{~m}^{3}}{\mathrm{~kJ}}\right)=\mathbf{6 9 1} \mathbf{~ k P a}
\end{aligned}
$$

