4-82 Air at a specified state contained in a piston-cylinder device undergoes an isothermal and constant volume process until a final temperature. The process is to be sketched on the $P-\boldsymbol{V}$ diagram and the amount of heat transfer is to be determined.

Assumptions 1 Air is an ideal gas since it is at a high temperature relative to its critical temperature of 304.2 K. 2 The kinetic and potential energy changes are negligible, $\Delta \mathrm{ke} \cong \Delta \mathrm{pe} \cong 0$.

Properties The properties of air are $R=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ and $c_{v}=0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ (Table A-2a).
Analysis (a) The processes 1-2 (isothermal) and 2-3 (constant-volume) are sketched on the $\mathrm{P}-\boldsymbol{V}$ diagram as shown.
(b) We take air as the system. This is a closed system since no mass crosses the boundaries of the system. The energy balance for this system fort he process 1-3 can be expressed as

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{c}
\text { Net energy transfer } \\
\text { by heat, work, and mass }
\end{array} \\
E_{\text {in }}-E_{\text {out }}^{\text {Change in internal, ,inetic, }} \\
\text { potential, etc. energies }
\end{array} \\
& -W_{b, \text { out, } 1-2}+Q_{\text {in }}=\Delta U=m c_{v}\left(T_{3}-T_{1}\right)
\end{aligned}
$$

The mass of the air is

$$
m=\frac{P_{1} V_{1}}{R T_{1}}=\frac{(600 \mathrm{kPa})\left(0.8 \mathrm{~m}^{3}\right)}{\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(1200 \mathrm{~K})}=1.394 \mathrm{~kg}
$$

The work during process 1-2 is determined from boundary work relation for an isothermal process to be

$$
\begin{aligned}
W_{b, \text { out }, 1-2} & =m R T_{1} \ln \frac{\boldsymbol{V}_{2}}{\boldsymbol{V}_{1}}=m R T_{1} \ln \frac{P_{1}}{P_{2}} \\
& =(1.394 \mathrm{~kg})\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(1200 \mathrm{~K}) \ln \frac{600 \mathrm{kPa}}{300 \mathrm{kPa}} \\
& =332.8 \mathrm{~kJ}
\end{aligned}
$$

since $\frac{\boldsymbol{V}_{2}}{\boldsymbol{V}_{1}}=\frac{P_{1}}{P_{2}}$ for an isothermal process.
Substituting these values into energy balance equation,

$$
\begin{aligned}
Q_{\mathrm{in}} & =W_{b, \text { out }, 1-2}+m c_{v}\left(T_{3}-T_{1}\right) \\
& =332.8 \mathrm{~kJ}+(1.394 \mathrm{~kg})(0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(300-1200) \mathrm{K} \\
& =-568 \mathbf{k J}
\end{aligned}
$$

Thus,

$$
Q_{\mathrm{out}}=\mathbf{5 6 8} \mathbf{~ k J}
$$

