$5-37 \mathrm{CO}_{2}$ gas is accelerated in a nozzle to $450 \mathrm{~m} / \mathrm{s}$. The inlet velocity and the exit temperature are to be determined.
Assumptions 1 This is a steady-flow process since there is no change with time. $2 \mathrm{CO}_{2}$ is an ideal gas with variable specific heats. $\mathbf{3}$ Potential energy changes are negligible. $\mathbf{4}$ The device is adiabatic and thus heat transfer is negligible. $\mathbf{5}$ There are no work interactions.
Properties The gas constant and molar mass of CO_{2} are $0.1889 \mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kg} . \mathrm{K}$ and $44 \mathrm{~kg} / \mathrm{kmol}$ (Table A-1). The enthalpy of CO_{2} at $500^{\circ} \mathrm{C}$ is $\bar{h}_{1}=30,797 \mathrm{~kJ} / \mathrm{kmol}$ (Table A-20).

Analysis (a) There is only one inlet and one exit, and thus $\dot{m}_{1}=\dot{m}_{2}=\dot{m}$. Using the ideal gas relation, the specific volume is determined to be

$$
\boldsymbol{v}_{1}=\frac{R T_{1}}{P_{1}}=\frac{\left(0.1889 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(773 \mathrm{~K})}{1000 \mathrm{kPa}}=0.146 \mathrm{~m}^{3} / \mathrm{kg}
$$

Thus,

$$
\dot{m}=\frac{1}{\boldsymbol{v}_{1}} A_{1} V_{1} \longrightarrow V_{1}=\frac{\dot{m} \boldsymbol{v}_{1}}{A_{1}}=\frac{(6000 / 3600 \mathrm{~kg} / \mathrm{s})\left(0.146 \mathrm{~m}^{3} / \mathrm{kg}\right)}{40 \times 10^{-4} \mathrm{~m}^{2}}=\mathbf{6 0 . 8} \mathbf{~ m} / \mathbf{s}
$$

(b) We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as

$$
\begin{aligned}
\underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{\begin{array}{c}
\text { Rate of net energy transfer } \\
\text { by heat, work, and mass }
\end{array}} & =\underbrace{\Delta \dot{E}_{\text {system }}^{\pi 0} \text { (steady) }}_{\begin{array}{c}
\text { Rate of change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}}=0 \\
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\dot{m}\left(h_{1}+V_{1}^{2} / 2\right) & =\dot{m}\left(h_{2}+\mathrm{V}_{2}^{2} / 2\right) \quad(\text { since } \dot{Q} \cong \dot{\mathrm{~W}} \cong \Delta \mathrm{pe} \cong 0) \\
0 & =h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2}
\end{aligned}
$$

Substituting,

$$
\begin{aligned}
\bar{h}_{2} & =\bar{h}_{1}-\frac{V_{2}^{2}-V_{1}^{2}}{2} M \\
& =30,797 \mathrm{~kJ} / \mathrm{kmol}-\frac{(450 \mathrm{~m} / \mathrm{s})^{2}-(60.8 \mathrm{~m} / \mathrm{s})^{2}}{2}\left(\frac{1 \mathrm{~kJ} / \mathrm{kg}}{1000 \mathrm{~m}^{2} / \mathrm{s}^{2}}\right)(44 \mathrm{~kg} / \mathrm{kmol}) \\
& =26,423 \mathrm{~kJ} / \mathrm{kmol}
\end{aligned}
$$

Then the exit temperature of CO_{2} from Table A-20 is obtained to be $\quad T_{2}=\mathbf{6 8 5 . 8} \mathrm{K}$

