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Slip-Flow Pressure Drop in
Microchannels of General Cross
Section
In the present study, a compact analytical model is developed to determine the pressure
drop of fully-developed, incompressible, and constant properties slip-flow through arbi-
trary cross section microchannels. An averaged first-order Maxwell slip boundary con-
dition is considered. Introducing a relative velocity, the difference between the bulk flow
and the boundary velocities, the axial momentum reduces to Poisson’s equation with
homogeneous boundary condition. Square root of area is selected as the characteristic
length scale. The model of Bahrami et al. (2006, “Pressure Drop of Laminar, Fully
Developed Flow in Microchannels of Arbitrary Cross Section,” ASME J. Fluids Eng.,
128, pp. 1036–1044), which was developed for no-slip boundary condition, is extended to
cover the slip-flow regime in this study. The proposed model for pressure drop is a
function of geometrical parameters of the channel: cross sectional area, perimeter, polar
moment of inertia, and the Knudsen number. The model is successfully validated against
existing numerical and experimental data collected from different sources in literature for
several shapes, including circular, rectangular, trapezoidal, and double-trapezoidal cross
sections and a variety of gases such as nitrogen, argon, and helium.
�DOI: 10.1115/1.3059699�
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Introduction
The fast-paced growth of microfluidic systems and their appli-

ations in electronics cooling, aerospace, micro electro mechani-
al systems �MEMS�, medical, and biomedical devices has moti-
ated many researchers to investigate microscale transport
henomena �1–3�. Microchannels are essential components of
any microfluidic devices �4�. Several factors that differentiate
icroscale from conventional flows have been identified through
number of experimental, numerical, and analytical studies.

hese factors include noncontinuum regimes, surface roughness,
nd compressibility effects �5–7�. Due to the small size of these
hannels, the length scale is comparable to molecular mean free
ath; thus, deviation from the continuum theory should be consid-
red. The nondimensional parameter used for analyzing this de-
iation is the Knudsen number defined as

Kn =
�

L
�1�

here � is the molecular mean free path and L is an appropriate
ength scale of the channel. When the Knudsen number is in the
ange of 0.001�Kn�0.1, a nonequilibrium state occurs very
lose to the wall, which is initiated from domination of molecular
ollisions with the walls over intermolecular collisions �8�. Hence,
o-slip boundary condition is no longer valid on channel bound-
ries, where a slip-velocity exists. However, for the rest of the
ow, the continuum assumption still holds. This is called slip-flow
egime.

Pressure drop in microconduits with different cross sections
ncluding noncontinuum effects has been the subject of several
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investigations. In rarefied gas flow, the friction factor reduces as
the Knudsen number increases. This is demonstrated theoretically
by Pfahler et al. �9�, Ebert and Sparrow �10�, Harley et al. �11�,
Morini and Spiga �12�, and Beskok and Karniadakis �13�. Experi-
mental studies conducted by Harley et al. �11�, Choi et al. �14�, Yu
et al. �15�, Arkilic et al. �16,17�, Araki et al. �18�, and Kim et al.
�4� confirm that the continuum assumption with no-slip velocity
on walls is unable to predict the flow behavior in microchannels in
this range of Knudsen number.

Pfahler et al. �9� performed one of the first analytical and ex-
perimental investigations on rarefied flows. They reported the ex-
istence of slip-flow in microchannels through measuring an in-
crease in mass flow rate when compared with the predicted values
from the continuum �no-slip� theory.

Kim et al. �4� reported experimental data for rarefied flow
through microtubes over the range of 0.0008�Kn�0.09 and
0.03�Re�30. They tested several gases such as nitrogen, he-
lium, and argon. Araki et al. �18� reported results for pressure drop
in trapezoidal and triangular channels in slip-flow regime where
0.011�Kn�0.035 and 0.05�Re�4.2 range. Arkilic et al. �16�
included compressibility effects in their tests by conducting ex-
periments in relatively higher Mach numbers. They also proposed
an analytical model for analyzing compressible slip-flow in trap-
ezoidal silicon microchannels; they did not report the range of
Mach number in their tests. Arkilic et al. �17� conducted experi-
ments to determine the effects of tangential momentum accommo-
dation on the mass flow rate through trapezoidal microchannels in
the slip-flow regime.

Ebert and Sparrow �9� formulated an analytical solution for
slip-flow through rectangular channels. They realized that the ef-
fect of slip is to flatten the velocity distribution relative to that of
a continuum flow. Assuming first-order slip boundary condition,
Morini and co-workers �12,19� performed numerical studies for
determination of pressure drop through microchannels of rectan-
gular, circular, trapezoidal, and double-trapezoidal cross sections
and reported their results in a tabular form for a range of cross
section aspect ratio for the slip-flow regime. Using similar bound-

ary conditions Khan and Yovanovich �20� developed a solution for
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uid flow and convective heat transfer in rectangular microchan-
els in slip-flow regime. Duan and Muzychka �21� proposed a
odel for the pressure drop of slip-flow through noncircular mi-

rochannels using the solution of the rectangular duct. They com-
ared their model with the numerical data of Morini et al. �19� for
ommon geometries. Their model is a function of the cross section
spect ratio defined for each geometry.

As a result of recent advances in microfabrication techniques,
icrochannels with different cross sectional geometries are fabri-

ated for both commercial and scientific purposes. Bahrami et al.
22,23� developed a general model for prediction of pressure drop
n microchannels of arbitrary cross section. Using the analytical
olution of elliptical duct and the concept of Saint-Venant prin-
iple in torsion, they showed that the Poiseuille number, f Re
24�, is a function of the polar moment of inertia, area, and pe-
imeter of the cross section of the channel. Their model showed
ood agreement with experimental and numerical data for a wide
ariety of cross sections such as rectangular, trapezoidal, triangu-
ar, circular, and moon shaped. The model of Bahrami et al., how-
ver, is restricted to no-slip velocity regime. The objective of this
aper is to extend the model of Bahrami et al. �22,23� to the
lip-flow regime.

In this study, a general model is developed for predicting the
oiseuille number of fully-developed flow in arbitrary cross sec-

ion microchannels with slip regime. The proposed model is vali-
ated with numerical and experimental data from different sources
or a variety of geometries, including circular, rectangular, trap-
zoidal, and double-trapezoidal cross sections and several gases
uch as nitrogen, argon, and helium.

Problem Statement
Fully-developed laminar, constant properties, and incompress-

ble flow in microchannels of constant general cross section is
onsidered �Fig. 1�. The Mach number, Ma=u /C, where C is the
ound velocity, can be used to determine the importance of the
ompressibility effects �24�. In general, the compressibility effects
an be neglected for the Mach numbers lower than 0.3 �24�. Due
o the small size of microchannels, the average velocity is typi-
ally higher than conventional pipes. Consequently, the pressure
rop and the Mach number are high in microchannels even in low
eynolds numbers. Morini et al. �19� argued that the Mach num-
er is proportional to multiplication of the Knudsen and the Rey-
olds numbers. It should be noted that in spite of the negligible
ompressibility effects in a wide range of Reynolds number in low
nudsen numbers, these effects can be neglected only for very

ow Reynolds numbers at higher Knudsen numbers �19�.
Based on the Knudsen number, flow regimes can be categorized

nto four groups: continuum �no-slip�, slip-flow, transition, and
olecular flows �25�. For slip-flow regime where 0.001�Kn
0.1, errors due to the use of Navier–Stokes �NS� equations are

egligible. However, no-slip boundary condition is no longer
alid on walls and a slip-velocity should be considered �8�. The
rst-order Maxwell boundary condition for slip-velocity is

us =
� − 2

�
�� �u

�n
�

wall

�2�

here the thermal creep effects on the solid-fluid interface are
eglected �25�. Here, us is the local slip-velocity, � is the tangen-

Fig. 1 Flow in arbitrary cross section microchannel
ial momentum accommodation factor, which is considered unity
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for most of engineering applications �26�, � is the molecular mean
free path, and n is the normal vector to the wall. Using above-
mentioned assumptions, the momentum equation reduces to

dP

dx
= �� �2u

�y2 +
�2u

�z2� �3�

This equation should be solved along with the following boundary
condition:

us =
� − 2

�
�

�w

�
, �w = �� �u

�n
�

wall

�4�

where �w is the local wall shear stress. The set of governing equa-
tion and the boundary condition form a Poisson’s equation with
slip boundary condition. Because of the geometrical complexities,
finding analytical solutions for the general cross section channels
is highly unlikely. Therefore, we seek an approximate solution
that can predict the pressure drop in arbitrary cross section with
reasonable accuracy. This will provide a powerful tool that can be
used in many practical instances such as basic design, parametric
study, and optimization analyses, where often the trends and a
reasonable estimate of the pressure drop are required.

3 Characteristic Length Scale
Selecting an appropriate and consistent characteristic length

scale is an important part of developing a comprehensive general
model. Selection of the characteristic length is an arbitrary choice
and will not affect the final solution. However, a more appropriate
length scale leads to more consistent results, especially when gen-
eral cross section is considered. A circular duct is fully described
with its diameter; thus the obvious length scale is the diameter �or
radius�. For noncircular cross sections, the selection is not as
clear; many textbooks and researchers have conventionally chosen
the hydraulic diameter, Dh, as the characteristic length. Yovanov-
ich �27,28� introduced the square root of area ��A� as a charac-
teristic length scale for heat conduction and convection problems.
Later, Muzychka and Yovanovich �29� proposed the use of �A for
the fully-developed flow in noncircular ducts. Bahrami et al.
�22,23� showed through analysis that �A appears in the solution of
fully-developed flow in noncircular ducts. They also compared
both Dh and �A and observed that using �A as the characteristic
length scale results in similar trends in Poiseuille number for mi-
crochannels with a wide variety of cross sections. Therefore, in
this study, �A is selected consistently as the length scale through-
out the analysis and in the definition of the Knudsen number.
Using �A, Eq. �4� becomes

us =
� − 2

�
Kn�A

�w

�
�5�

4 Model Development
Equation �5� shows that slip-velocity is related to local wall

shear stress, which depends on the topology of the boundary and
the cross section. Averaging the wall shear stress over the perim-
eter of the channel, Eq. �5� becomes �24�

ūs =
� − 2

�
Kn�A

�̄w

�
�6�

where ūs and �̄w are the averaged slip-velocity and wall shear
stress, respectively. Using an average �and constant� slip-velocity
will simplify the solution to Eq. �3�. This allows us to introduce a
relative axial velocity, U, which is the difference between the bulk
and the slip-velocities:

U = u − ūs �7�

After change in variable, Eq. �3� becomes
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dP

dx
= �� �2U

�y2 +
�2U

�z2 � �8�

ased on its definition, the relative velocity is zero on the channel
alls. As a result, Eq. �8� becomes Poisson’s equation with zero
oundary condition. It is the same governing equation for fully-
eveloped flow in the continuum regime. This equation has been
olved for various geometries such as circular, rectangular, and
lliptical ducts. The analytical solutions can be found in textbooks
uch as White �24� and Bejan �30�. A compact model for determi-
ation of Poiseuille number in general cross section channels has
een presented by Bahrami et al. �22,23�.

To determine the Poiseuille number, f Re, Bahrami et al.
22,23� used the analytical solution of Eq. �8� for elliptical chan-
el. They presented the final result in the following easy-to-use
orm:

f Re�A = 32�2Ip
�
�A

�
, Ip

� =
Ip

A2

�9�

Re�A =
�ū�A

�
, f =

2�̄w

�ū2

here Ip
� is the nondimensional polar moment of inertia of the

ross section and f and Re�A are the Fanning friction factor and
eynolds number based on �A, respectively. The elliptical chan-
el was considered not because it is likely to occur in practice but
ather to utilize the unique geometrical property of its velocity
olution. The same approach is followed here. Starting from the
lliptical cross section and using the axial relative velocity, one

an find the average relative axial velocity Ū for elliptical chan-
els �24�:

Ū =
b2c2

4�b2+c2�
	P

�L
�10�

pplying a force balance in the channel leads to �see Fig. 1�

�̄w�L = 	PA �11�

ross sectional area and perimeter for elliptical channel are

A = �bc

� = 4bE��1 − 
2� �12�

here E�
�=	0
�/2�1−
x2dx is the complete elliptic integral of the

econd kind. Using Eqs. �11� and �12� and defining an aspect
atio, 
, as the ratio of the channel major and minor axes, the
verage velocity can be presented as �22�

Ū =
�
E��1 − 
2�
��3�1 − 
2�

�̄w

�
�A �13�

his equation can be rewritten as

Ū =
��̄w

16�2�Ip
�

�14�

sing Eqs. �14� and �7�, the average channel velocity, ū, becomes

ū =
��̄w

16�2�Ip
�

+
� − 2

�
Kn�A

�̄w

�
�15�

ntroducing Fanning friction factor and after some simplifications,
ne can write

f Re�A =
2

�

16�2�AIp
�

+
� − 2

�
Kn

�16�

ote that Eq. �16� is a general equation; in the continuum limit,

here Kn→0, Eq. �16� yields the model of Bahrami et al. �22�,
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i.e., Eq. �9�. The relationship between f Re for slip-flow regime
and the continuum flow is

f Re�A =
1

1

f Re�A
no-slip +

� − 2

2�
Kn

�17�

Following Morini et al. �19�, reduction in friction coefficient in
slip condition, �, can be found as

� =
f Re�A

f Re�A
no-slip =

1

1 +
� − 2

2�
� Kn

�18�

where � was determined through numerical analysis for each ge-
ometry in Ref. �19�. Using the present model, Eq. �16�, � can be
found from

� =
f Re�A

f Re�A
no-slip =

1

1 +
� − 2

�

f Re�A
no-slip

2
Kn

�19�

Therefore, � can be determined once f Re�A is known for the
no-slip condition. Note that the value of � is always equal to or
less than unity.

5 Model Verification
Although the presented approach is based on analytical solution

for elliptical cross section, the final relationship is a function of
general geometrical parameters that can be calculated for any
cross sections. In this section, the present model is compared with
the numerical and the experimental data available for several
common cross sections. The proposed model is verified with nu-
merical results of Morini et al. �19� for circular, rectangular, trap-
ezoidal, and double-trapezoidal microchannels as well as experi-
mental data published by Kim et al. �4� and Araki et al. �18� for
circular and trapezoidal ducts, respectively. For convenience, the
geometrical parameters needed for different cross sections are
listed in Table 1. In Secs. 5.1–5.4 the value of tangential momen-
tum accommodation factor, �, is assumed to be 1. The available
data in literature were reported based on the hydraulic diameter.
The Knudsen and the Poiseuille numbers based on the hydraulic
diameter can be converted to �A basis using the following rela-
tionships:

f Re�A = f ReDh

�

4�A
�20�

Kn�A = KnDh

4�A

�

5.1 Circular Microchannels. Using the geometrical param-
eters of circular channels listed in Table 1, f Re�A can be deter-
mined as

f Re�A =
1

1

14.18
+ Kn

, � = 1 �21�

Morini et al. �19� proposed a similar correlation for f Re�A:

f Re�A =
f Re�A

no-slip

1 + 8 Kn
�22�

In Table 2 the present model is compared with the analytical
model proposed by Morini et al. �19�, i.e., Eq. �22�. As can be
seen, the present model yields the exact same values reported in

Ref. �19� over the slip-flow range of the Knudsen number.
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Figure 2 shows the comparison between the present model and
xperimental data published by Kim et al. �4�. They conducted
ests with nitrogen, argon, and helium over a range of 0.0008

Kn�0.09 and 0.03�Re�30. The microtubes used in their ex-
eriments were made of quartz glass and had diameters ranging
rom 5 �m to 100 �m. According to Morini et al. �31� the ex-
erimental uncertainty of pressure drop measurements is on the
rder of 8–14%.

As can be seen, the present model captures the trends of the
xperimental data over a range of geometrical and thermophysical
arameters. Also note that most of the data fall within the 10%
ounds of the model.

5.2 Rectangular Microchannels. The geometrical character-
stics and schematic of rectangular channels are presented in Table
. Substituting required parameters in Eq. �16�, f Re�A is deter-
ined as

Table 1 Geometrical characte

able 2 Comparison between present model and analytical
odel of Morini et al. †19‡

Kn f Re�A �model� f Re�A �19� �

0 14.180 14.180 1.000
0.001 14.080 14.080 0.993
0.005 13.695 13.695 0.966
0.01 13.241 13.241 0.934
0.03 11.693 11.693 0.825
0.06 9.948 9.948 0.702
0.09 8.656 8.656 0.610
0.1 8.297 8.297 0.585
31201-4 / Vol. 131, MARCH 2009
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f Re�A
slip =

1

1

4�2�1 + 
2�

3�
�1 + 
�

− Kn

, � = 1 �23�

Table 3 and Fig. 3 show the comparison of the proposed model,
Eq. �16�, with numerical results of Morini et al. �19� for a range of

ics of different cross sections

Fig. 2 Comparison of the model with experimental data of Kim
rist
et al. †4‡ for circular channels
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spect ratio, 0.01�
�1. As can be seen, except for a few points,
he agreement between the model and the numerical values is less
han 8%.

5.3 Trapezoidal Microchannels. The cross section of an
sosceles trapezoidal microchannel and its geometrical parameters
re presented in Table 1. This is an important shape since this
ross section is formed as a result of etching process in silicon
afers �19�. Furthermore, in the limit when the top side length, a,
oes to zero, it yields an isosceles triangle and in another limit

Table 3 Comparison between model and n


=0.01 


Kn f Re�A �19� f Re�A �model�
Error
�%� Kn f Re�A �19�

.0000 119.6 130.3 8.2 0.0000 36.8

.0002 118.2 128.6 8.2 0.0006 36.4

.0010 112.8 122.4 7.8 0.0029 34.9

.0015 109.8 118.8 7.6 0.0043 34.0

.0020 106.8 115.4 7.4 0.0057 33.2

.0050 92.1 98.5 6.5 0.0144 28.9

.0099 74.9 79.2 5.4 0.0287 23.7

.0149 63.1 66.2 4.7 0.0431 20.2

.0198 54.5 56.9 4.1 0.0575 17.5


=0.6 


Kn f Re�A �19� f Re�A �model�
Error
�%� Kn f Re�A �19�

.0000 15.5 14.4 7.1 0.0000 14.5

.0010 15.3 14.3 7.0 0.0010 14.4

.0048 14.9 14.0 6.5 0.0050 13.9

.0073 14.6 13.7 6.2 0.0075 13.7

.0097 14.3 13.5 5.9 0.0099 13.4

.0242 12.8 12.3 4.3 0.0248 12.1

.0484 10.9 10.7 2.3 0.0497 10.4

.0726 9.6 9.5 0.8 0.0745 9.1

.0968 8.5 8.5 0.3 0.0994 8.1

rror =
f Re�A �19� − f Re�A �model�

f Re�A �model�
� 100

ig. 3 Comparison of the model with numerical results of

orini et al. †19‡ for rectangular channels
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when a=b, a rectangular channel will be formed. The geometrical
characteristics of these limiting cases are listed in Table 4, where
� in Tables 1 and 4 is a nondimensional parameter defined as

� =
4ab

�a + b�2 �24�

� is zero for triangular and 1 for rectangular conduits. The angle
� �as shown in Table 1� is related to � and 
 as �22�

erical data †19‡; rectangular cross section

1 
=0.3

Re�A �model�
Error
�%� Kn f Re�A �19� f Re�A �model�

Error
�%�

38.2 3.6 0.0000 20.8 20.1 3.2
37.8 3.6 0.0008 20.6 20.0 3.1
36.2 3.7 0.0042 19.8 19.3 2.7
35.3 3.7 0.0063 19.4 18.9 2.4
34.4 3.7 0.0084 19.0 18.6 2.2
30.0 3.7 0.0211 16.8 16.6 1.0
24.7 3.7 0.0421 14.1 14.1 0.4
20.9 3.7 0.0632 12.1 12.3 1.5
18.2 3.8 0.0843 10.7 10.9 2.2

8 
=1

Re�A �model�
Error
�%� Kn f Re�A �19� f Re�A �model�

Error
�%�

13.4 7.9 0.0000 14.2 13.2 8.1
13.3 7.8 0.0010 14.1 13.1 8.0
13.0 7.3 0.0050 13.7 12.7 7.4
12.8 7.0 0.0075 13.4 12.5 7.1
12.6 6.7 0.0100 13.2 12.3 6.8
11.5 5.1 0.0250 11.9 11.3 5.2
10.1 3.1 0.0500 10.2 9.9 3.1
8.9 1.6 0.0750 8.9 8.8 1.5
8.0 0.4 0.1000 8.0 7.9 0.3

Table 4 Limiting cases of isosceles trapezoid

Cross section 
 � Ip
� �A /�

Isosceles triangular
b

2h 0
3
2 + 1

18


�


2��
2 + 1 + 
�

Equilateral triangular
1
�3 0

�3

9

�3

6�4 3

Rectangular
b

h 1

2 + 1

12


�3

2�1 + 
�

Square 1 1
1

6

1

4

um

=0.

f

=0.

f
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sin � =
1

�
2 − �
2 + 1
�25�

ahrami et al. �22� presented the Poiseuille number for the no-slip
ondition as

f Re�A
no-slip =

4�2��3
2 + 1� + ��− 3
2 + 1��
�


9�
 + �
2 − �
2 + 1�
�26�

sing Eqs. �16� and �26� one can calculate f Re�A. In Table 5 the
redicted results of the proposed model are compared with the
umerical data of Morini et al. �19� with �=54.74 deg. The
greement between the present model and the numerical data is
ithin 8%; however, there are a few points, especially at relatively
igh or low aspect ratios, where differences up to 12% are
bserved.

Figure 4 shows the comparison between the proposed model
nd the experimental data of Araki et al. �18� for trapezoidal mi-
rochannels with �=54.74 deg. They used two different channels
ith dimensions b=41.5 �m and 41.2 �m and h=5.56 �m and
.09 �m, respectively. These channels were made of silicon wa-
er with hydraulic diameters of 9.41 �m and 3.92 �m. They con-
ucted tests with nitrogen and helium over a range of 0.011
Kn�0.035 and 0.05�Re�4.2. The uncertainty of their mea-

urements was reported to be 10.9%. As shown in Fig. 4, the
alues predicted by the model are within 10% accuracy of the
ata.

5.4 Double-Trapezoidal Microchannels. Double-trapezoidal
ross section geometry is depicted in Table 1. Same as the trap-
zoidal cross section, the nondimensional parameter � is defined
y Eq. �24�.

Table 6 and Fig. 5 present the comparison between the pro-

Table 5 Model versus da


=20.07 
=

Kn f Re�A �19� f Re�A �model�
Error
�%� Kn f Re�A �19�

.0000 53.4 56.6 5.6 0.0000 27.1

.0004 52.8 56.0 5.6 0.0007 26.8

.0021 50.5 53.5 5.5 0.0034 25.7

.0031 49.2 52.0 5.4 0.0052 25.1

.0041 48.0 50.7 5.4 0.0069 24.6

.0104 41.6 43.8 5.0 0.0172 21.6

.0207 34.0 35.7 4.7 0.0345 17.9

.0311 28.8 30.1 4.4 0.0517 15.3

.0415 24.9 26.0 4.2 0.0689 13.4


=1.5 


Kn f Re�A �19� f Re�A �model�
Error
�%� Kn f Re�A �19�

.0000 15.4 14.5 6.1 0.0000 15.3

.0009 15.3 14.4 5.9 0.0009 15.2

.0045 14.8 14.0 5.4 0.0045 14.7

.0067 14.5 13.8 5.0 0.0067 14.5

.0090 14.3 13.6 4.7 0.0089 14.2

.0225 12.8 12.5 3.0 0.0223 12.8

.0449 11.0 10.9 0.8 0.0447 11.0

.0674 9.7 9.7 0.9 0.0670 9.6

.0899 8.6 8.8 2.2 0.0894 8.6

rror =
f Re�A �19� − f Re�A �model�

f Re�A �model�
� 100
osed model with numerical data of Morini et al. �19� for �
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=54.74 deg. As can be seen, except for a few points, the agree-
ment between the model and the numerical values is less than 8%.

6 Summary and Conclusions
Pressure drop of the fully-developed, incompressible slip-flow

through microchannels of general cross sections is investigated.
An averaged first-order Maxwell boundary condition is assumed

19‡; trapezoidal channels

7 
=2.7

Re�A �model�
Error
�%� Kn f Re�A �19� f Re�A �model�

Error
�%�

27.1 0.0 0.0000 18.6 17.9 3.8
26.8 0.1 0.0008 18.4 17.8 3.7
25.9 0.4 0.0042 17.8 17.3 3.2
25.3 0.6 0.0063 17.4 17.0 2.9
24.8 0.8 0.0084 17.1 16.7 2.6
21.9 1.7 0.0209 15.2 15.1 1.0
18.5 2.9 0.0418 12.9 13.0 0.9
15.9 3.7 0.0628 11.2 11.5 2.3
14.0 4.3 0.0837 9.9 10.2 3.4

9 
=0.8

Re�A �model�
Error
�%� Kn f Re�A �19� f Re�A �model�

Error
�%�

13.7 11.5 0.0000 15.4 13.7 12.7
13.7 11.3 0.0009 15.3 13.6 12.5
13.3 10.6 0.0044 14.8 13.3 11.7
13.1 10.1 0.0066 14.5 13.1 11.2
12.9 9.7 0.0088 14.3 12.9 10.7
11.9 7.4 0.0221 12.8 11.9 8.2
10.5 4.5 0.0442 11.0 10.5 4.9
9.4 2.2 0.0663 9.6 9.4 2.5
8.5 0.5 0.0884 8.6 8.5 0.6

Fig. 4 Comparison of the model with experimental data of
ta †

5.0

f

=0.

f

Araki et al. †18‡ for trapezoidal channels „�=54.74 deg…
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Downloa
n the channel walls. Introducing a relative velocity, axial mo-
entum equation reduces to Poisson’s equation with no-slip

oundary condition. Following Bahrami et al. �22,23� and using
nalytical solution for elliptical microchannels, a compact model
s developed that predicts the Poiseuille number as a function of
eometrical parameters of the duct. The presented model is more
eneral than the model of Bahrami et al. and covers both slip-flow
nd no-slip regimes.

Table 6 Model versus data †1


=0.83 
=

Kn f Re�A �19� f Re�A �model�
Error
�%� Kn f Re�A �19�

.0000 14.8 13.8 6.6 0.0000 14.7

.0010 14.6 13.7 6.5 0.0010 14.6

.0050 14.2 13.4 6.1 0.0051 14.1

.0075 13.9 13.2 5.8 0.0077 13.9

.0100 13.7 12.9 5.5 0.0103 13.6

.0251 12.3 11.8 4.2 0.0256 12.3

.0501 10.5 10.3 2.5 0.0513 10.5

.0752 9.2 9.1 1.2 0.0769 9.2

.1002 8.2 8.2 0.2 0.1025 8.2


=1.515 
=

Kn f Re�A �19� f Re�A �model�
Error
�%� Kn f Re�A �19�

.0000 14.1 13.6 3.5 0.0000 14.0

.0011 14.0 13.5 3.4 0.0011 13.9

.0053 13.5 13.1 3.2 0.0054 13.5

.0080 13.3 12.9 3.0 0.0080 13.2

.0107 13.1 12.7 2.9 0.0107 13.0

.0267 11.8 11.5 2.2 0.0268 11.7

.0534 10.1 10.0 1.3 0.0536 10.1

.0802 8.9 8.8 0.7 0.0803 8.8

.1069 7.9 7.9 0.2 0.1071 7.9

rror =
f Re�A �19� − f Re�A �model�

f Re�A �model�
� 100

ig. 5 Comparison of the model with numerical data of Morini

t al. †19‡ for double-trapezoidal conduits
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The model is successfully validated against existing numerical
and experimental data in literature for a variety of shapes includ-
ing circular, rectangular, trapezoidal, and double-trapezoidal cross
sections, with a relative difference on the order of 8%.

Employing the proposed model, one only needs to compute the
nondimensional parameter Ip

��A /� of the channel to determine the
Poiseuille number. On the other hand, using the conventional
method, Poisson’s equation must be solved with slip boundary
condition to find the velocity field and the mean velocity often
numerically. Then the averaged wall shear stress should be calcu-
lated to find f Re�A. This clearly shows the convenience of the
proposed approximate model.
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Nomenclature
A � cross sectional area, m2

C � sound velocity, m/s
Dh � hydraulic diameter, m

E�·� � complete elliptic integral of the second kind
f Re � Poiseuille number

Ip � polar moment of inertia, m4

Ip
� � dimensionless polar moment of inertia, Ip /A2

Kn � Knudsen number
L � characteristic length, m

Ma � Mach number, Ma=u /C
P � pressure, N /m2

Re � Reynolds number
�

double-trapezoidal channels

6 
=1.29

Re�A �model�
Error
�%� Kn f Re�A �19� f Re�A �model�

Error
�%�

13.9 6.0 0.0000 14.3 13.7 4.2
13.8 5.9 0.0011 14.1 13.6 4.1
13.4 5.5 0.0053 13.7 13.2 3.8
13.2 5.3 0.0079 13.5 13.0 3.7
13.0 5.1 0.0106 13.2 12.8 3.5
11.8 4.0 0.0265 11.9 11.6 2.8
10.2 2.6 0.0530 10.2 10.0 1.8
9.0 1.5 0.0795 9.0 8.9 1.0
8.1 0.7 0.1060 8.0 7.9 0.4

9 
=2.63

Re�A �model�
Error
�%� Kn f Re�A �19� f Re�A �model�

Error
�%�

13.6 3.0 0.0000 14.7 14.3 2.9
13.5 3.0 0.0010 14.6 14.2 2.8
13.1 2.8 0.0052 14.1 13.8 2.6
12.9 2.6 0.0079 13.8 13.5 2.5
12.7 2.5 0.0105 13.6 13.3 2.4
11.5 1.9 0.0262 12.2 12.0 1.7
10.0 1.0 0.0525 10.5 10.4 0.9
8.8 0.4 0.0787 9.2 9.1 0.3
7.9 0.1 0.1049 8.1 8.2 0.2
9‡;

0.9

f

1.7

f

A � square root of area, m
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Downloa
u � axial velocity, m/s
us � local slip-velocity, m/s
ūs � average slip-velocity, m/s
U � relative velocity, m/s

reek Symbols
� � perimeter, m

 � aspect ratio
� � molecular mean free path, m
� � viscosity, N s /m2

� � tangential momentum accommodation factor
�̄w � averaged wall shear stress, N /m2

�w � local shear stress, N /m2

� � reduction in friction coefficient in slip condi-
tion, f Re�A / f Re�A

no-slip
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