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Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number
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In this study, effects of microstructure on the viscous permeability and Forchheimer coefficient of
monodispersed fibers are investigated. The porous material is represented by a unit cell which is assumed to be
repeated throughout the medium. Based on the orientation of the fibers in the space, fibrous media are divided
into three categories: one-, two-, and three-directional (1D, 2D, and 3D) structures. Parallel and transverse flow
through square arrangements of 1D fibers, simple 2D mats, and 3D simple cubic structures are solved numerically
over a wide range of porosity (0.35 < ε < 0.95) and Reynolds number (0.01 < Re < 200). The results are used
to calculate the permeability and the inertial coefficient of the considered geometries. An experimental study is
performed; the flow coefficients of three different ordered tube banks in the moderate range of Reynolds number
(0.001 < Re < 15) are determined. The numerical results are successfully compared with the present and the
existing experimental data in the literature. The results suggest that the permeability and Forchheimer coefficient
are functions of porosity and fiber orientation. A comparison of the experimental and numerical results with the
Ergun equation reveals that this equation is not suitable for highly porous materials. As such, accurate correlations
are proposed for determining the Forchheimer coefficient in fibrous porous media.
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I. INTRODUCTION

An in-depth understanding of flow through fibrous porous
materials and determining the resulting pressure drop are
important in numerous engineering applications such as
filtration and separation of particles [1], biological systems [2],
composite fabrication [3], compact heat exchangers [4–6],
biological materials [7], and fuel cell technology [8]. In
creeping flow regime, according to the Darcy equation,
the relationship between volume-averaged velocity through
porous media, UD , and the pressure drop is linear [9]:

−dP

dx
= μ

K
UD, (1)

where K is the permeability. In higher Reynolds numbers, the
relationship becomes nonlinear and a modified Darcy equation
should be used [9]:

−dP

dx
= μ

K
UD + β U 2

D, (2)

where β is called the inertial coefficient. For a fibrous medium,
the flow coefficients are expected to depend on the porosity,
fiber diameter, distribution of fibers in the space, and the
orientation of fibers relative to the flow direction.

Based on the orientation of the fibers in space, three
categories can be considered for fibrous structures (Fig. 1):
one-directional (1D), where the axes of fibers are parallel to
each other; two-directional (2D), where the fiber axes are
located on planes parallel to each other with an arbitrary
distribution on these planes; and three-directional (3D), where
the fiber axes are randomly positioned and oriented in a given
volume. With the exception of the 3D structures, the rest are
anisotropic [10].
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A variety of analytical, theoretical, and experimental
methods have been employed by researchers to predict the
flow properties of fibrous materials. Existing analytical works
are mostly limited to study of the creeping flow over a single
cylinder with a limited boundary layer or through periodic fiber
arrays [11–18]. In addition, few models have been reported
that are capable of predicting the permeability of 2D and
3D structures [1,19–22]; recently, Tamayol and Bahrami [22]
have reviewed these models. Numerical and experimental
studies for creeping flow in fibrous media covers a wider
range of porosity and fiber distribution in 1D [21,23,24],
2D [21,25–29], and 3D [30–33] structures. Most of the existing
correlations in literature for 2D and 3D are based on curve
fitting of numerical and experimental data [10].

Considering the inertial effects in the flow analysis adds to
the complexity of the problem. As such, no analytical solutions
were found in the literature for the moderate Reynolds number
flows through fibrous structures. The existing studies are either
numerical or experimental. Effects of Reynolds number on
the pressure drop through unidirectional monodisperse and
bimodal 1D fibrous structures were investigated numerically
by Nagelhout et al. [34], Martin et al. [35], Lee and Yang [36],
Koch and Ladd [37], Edwards et al. [38], Ghaddar [39], and
Papathanasiou et al. [40]. Their results, in general, confirmed
a parabolic relationship between pressure drop and flow rate
in the considered geometries. However, comparison of these
numerical results with conventional models in the literature
such as the Ergun equation was not successful [40].

The studies of moderate Reynolds number flows through 2D
and 3D structures are not frequent. Recently, Rong et al. [41]
used the lattice Boltzmann method to investigate the flow in a
three dimensional random fiber network with porosities in the
range of 0.48 < ε < 0.72. Their results were in agreement with
the Forchheimer equation which is in line with the observations
of [40]. Boomsma et al. [42] have also studied flow in high
porosity 3D fibrous structures to predict flow properties of
open cell aluminum foams.
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FIG. 1. (Color online) Structures with different fibers orientation;
(a) 1D, (b) 2D, and (c) 3D.

Our literature review revealed that no comprehensive
studies exist on the effects of microstructure, especially fiber
orientation, on the flow properties of fibrous materials in a
low to moderate range of Reynolds numbers. In addition,
very few experimental works have been published for the
flow through ordered fibers with moderate Reynolds numbers.
In this study, the effects of porosity and fiber orientation on
the flow coefficients of monodispersed fibrous materials are
investigated. Parallel and transverse flow through a variety of
fibrous matrices including square fiber arrangements, simple
two directional mats, and simple cubic structures are solved
numerically over the porosity range of 0.4 < ε < 0.95 and
Reynolds number range of 0.01 < Re < 200. The results are
then used to find permeability and the inertial coefficient of the
solid matrices. To verify the present numerical results, pressure
drop through three different tube banks with porosity range of
0.8 < ε < 0.9 are tested using various water-glycerol mixtures
to determine the flow coefficients. The numerical results
are successfully compared with the present experimental
measurements and the data found in the literature.

II. GEOMETRICAL MODELING

Following other researchers [19–22,34–40,43–45], the
porous media are represented by a unit cell which is assumed to
be repeated throughout the media. The unit cell (or basic cell)
is the smallest volume which can represent the characteristics
of the whole medium.

The flow properties of square arrays of equally sized,
equally spaced fibers, shown in Fig. 2, are studied as a
representative of 1D structures. The solid volume fraction
ϕ for the arrangement shown in Fig. 2 is related to the
distance between the centers of adjacent fibers, S, and the
fibers diameter d:

ϕ = πd2

4S2
. (3)

To model 2D woven textile materials, the ordered geometry
shown in Fig. 3, where the fibers are resting on each other,

FIG. 2. Square fiber arrangement for analysis of 1D structures.

FIG. 3. Considered unit cells for modeling 2D fibrous structures.

is considered. The relationship between solid volume fraction
(ϕ) and other geometrical parameters in Fig. 3 is

ϕ = πd

4S
. (4)

The flow properties of simple cubic (SC) structures are
investigated as a representative unit cell for 3D materials; see
Fig. 4. The relationship between the solid volume fraction and
geometric parameters of SC arrangement is [32]

ϕ = 3πd2

4S2
−

√
2
d3

S3
. (5)

III. MICROSCOPIC AND MACROSCOPIC
FLOW EQUATIONS

If the pore sizes are much larger than the molecular mean
free path, flow in pore scale is governed by the Navier-Stokes
equation; that is the continuum flow hypothesis which is
considered here. Assuming incompressible, steady state flow,
the microscopic equations become [9]

�∇ · ⇀

V = 0, (6)

ρ
⇀

V · ∇ ⇀

V = −�∇P + μ �∇2 ⇀

V , (7)

FIG. 4. Simple cubic unit cells for modeling 3D structures.
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where
⇀

V is the pore scale velocity vector, and ρ and μ are the
fluid density and viscosity, respectively. Equations (6) and (7)
are subject to no-slip boundary condition at the fibers’ surface.
After volume averaging and some simplifications, Eq. (7) leads
to Eq. (2), which is a decomposition of the viscous and inertial
contributions. In the creeping flow limit, Eq. (2) reduces
to Eq. (1). Equation (2) is usually written in the following
form [9]:

−dP

dx
= μ

K
UD + ρF√

K
U 2

D, (8)

where F is a dimensionless number called the Forchheimer
coefficient. A special form of Eq. (6) is the Ergun equation:

−dP

dx
= 150

(1 − ε)2

ε3d2
UD + 1.75

(1 − ε)

ε3d
U 2

D, (9)

where K = ε3d2/150(1 − ε)2 and F = 0.14/ε3/2. The Ergun
equation is based on a curve fit of experimental data collected
for granular materials [9].

IV. EXPERIMENTAL APPROACH

Experimental data for moderate Reynolds number flow
through the fibrous structures of interest to us are not abundant
in the open literature. As such, three samples of tube banks
with 1D square arrangement shown in Fig. 5 were tested.
To fabricate the tube bank sample, polymethyl methacrylate
(PMMA) sheets of 3-mm thickness were cut and drilled using
a laser cutter with an accuracy of 0.05 mm. Glass capillary
tubes with diameter of 1.5 mm were inserted and fixed using
an adhesive tape to form tube banks, as shown in Fig. 5. The
lengths of the tube banks were selected such that a minimum
of 15 rows of cylinders existed in the flow direction for each
sample. The properties of the samples are summarized in
Table I.

A custom-made gravity driven test bed, illustrated in Fig. 5,
was built that included an elevated reservoir, an entry section,
a sample holder section, and an exit section with a ball valve.
The liquid level was kept constant during the experiment to
ensure that the variation of the pressure head was negligible
during the experiment. The pressure drop across the samples

FIG. 5. (Color online) Schematic of the test setup.

TABLE I. Summary of the properties of the tested samples; water-
glycol used as test fluid.

Sample name ε d (mm) K (m2) β (m−1) F

Sq-08 0.8 1.5 1.38 × 10−7 75 0.028
Sq-085 0.85 1.5 3.74 × 10−7 35.8 0.022
Sq-09 0.9 1.5 5.44 × 10−7 26.7 0.020

was measured using a differential pressure transducer, PX-154
(BEC Controls). To minimize entrance and exit effects on the
pressure drop measurements, pressure taps were located a few
rows apart (at least three rows) from the first and the last
tube rows in the tube bank samples. Several water-glycerol
mixtures with different mass concentrations and viscosities
(0.015–1.4 N s/m2) were used to change the flow Reynolds
number from 0.001 to 15. The bulk flow was calculated
by weighing the collected test fluid over a period of time.
The maximum uncertainty in the flow rate measurements
was 4%.

To obtain the permeability and the inertial coefficient from
the measured pressure drop (dp/dx) and mass flow values, the
volume-averaged superficial velocity UD was calculated from
the mass flow rate data and then (dp/dx)/μUD was plotted
versus ρUD/μ. The y intercept and the slope of the data were
then 1/K and F/

√
K , respectively; see Eq. (8). Using Eq. (2),

the inertial coefficient was then calculated. From Fig. 6, it can
be seen that the measured pressure drops present a parabolic
relationship with the volume-averaged velocity.

The uncertainty associated with the permeability and
inertial coefficient, calculated based on the measured variables,
can be estimated as

E(β,K)

β,K
=

√[
E(ρUD/μ)

ρUD/μ

]2

+
[
E(�P/LμUD)

�P/LμUD

]2

, (10)

ρ UD / μ

(d
P

/d
x)

/(
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D
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FIG. 6. Measured values of 1/μUD(dp/dx) for the samples of
tube bank with square fiber arrangement.
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TABLE II. Uncertainty in the measured parameters.

Parameter Uncertainty

ρ 3%
�P/L 1% of full scale
Q 4% of full scale
UD 4%
K 12%
β 12%

where

E(ρUD/μ)

ρUD/μ
=

√[
E(ρ)

ρ

]2

+
[
E(UD)

UD

]2

+
[
E(μ)

μ

]2

, (11)

E(�P/LμUD)

�P/LμUD

=
√[

E(�P/L)

�P/L

]2

+
[
E(UD)

UD

]2

+
[
E(μ)

μ

]2

.

(12)

E(.) is the uncertainty in measurement of each parameter; these
values are listed in Table II. The maximum uncertainty in the
experimental values of permeability and inertial coefficient is
estimated to be 12%.

V. NUMERICAL PROCEDURE

Equations (6) and (7) are solved using FLUENT [45] which
is a finite volume based software. The second order upwind
scheme is selected to discretize the governing equations and
the SIMPLE algorithm [46] is employed for pressure-velocity
coupling. The inlet and outlet boundaries of the computational
domains are considered to be periodic, i.e., the velocity
distributions on both boundaries are the same [45]. The
symmetry boundary condition is applied on the side borders of
the considered unit cells; this means that the normal velocity
and gradient of the parallel component of the velocity on the
side borders are zero. Structured grids and unstructured grids
are generated for 1D, 2D, and 3D networks, respectively, using
GAMBIT [45], the preprocessor in FLUENT software.

Numerical grid aspect ratios are kept in the range of 1–7.
Grid independence is tested for different cases and the size
of the computational grids used for each geometry is selected
such that the maximum difference in the predicted values for
pressure gradient is less than 2%. The maximum number of
grids used for 1D and 2D-3D structures are approximately
14k and 1400k, respectively. It should be noted that the
convergence criterion, the maximum relative error in the value
of dependent variables between two successive iterations, is
set at 10−6.

In the present study, numerical simulations are carried out
for fibrous networks in the porosity range of 0.3–0.95 and in
the Reynolds number range of 0.001–200. SC arrangements
are orthotropic while the rest of the considered structures
are anisotropic [10]. Therefore, numerical simulations are
conducted for flow parallel to different coordinate axes.
The same method as described in the previous section is
employed to determine the permeability and the inertial and/or

TABLE III. Flow properties for the considered fibrous structures.

Square array (1D)

Normal flow Parallel flow

ε K/d2 F ε K/d2 F

0.45 0.0015 0.13 0.45 0.0079 0
0.65 0.014 0.026 0.55 0.0177 0
0.8 0.072 0.018 0.65 0.0378 0
0.9 0.300 0.011 0.8 0.1667 0
0.95 0.892 0.009 0.9 0.643 0

Planar structures (2D)

Through-plane flow In-plane flow

ε K/d2 F ε K/d2 F

0.35 0.0007 0.313 0.35 0.0016 0.092
0.5 0.0046 0.118 0.5 0.0069 0.046
0.6 0.012 0.091 0.6 0.0164 0.033
0.8 0.106 0.033 0.8 0.0807 0.018
0.9 0.439 0.0028 0.9 0.4119 0.013

Simple cubic (3D)

ε K/d2 F

0.31 0.0011 0.914
0.37 0.0023 0.562
0.59 0.0174 0.141
0.79 0.118 0.041
0.87 0.336 0.024

Forchheimer coefficient from numerical results for different
unit cells. The summary of the computed flow coefficients is
reported in Table III.

Flow parallel to axes of square arrays of cylinders is
similar to laminar channel flows. This leads to zero value
for Forchheimer coefficient in parallel flow as reported in
Table I. Similarly, for 2D structures, the in-plane Forchheimer
coefficients have lower values than the calculated values for
through-plane flow. This results from the fact that 50% of
the fibers in the considered geometry are parallel to the flow
direction. Therefore, no inertial drag forces are exerted on
these fibers.

VI. COMPARISON OF THE NUMERICAL RESULTS
WITH EXISTING DATA IN THE LITERATURE

A. Square arrangement (1D)

To verify the numerical analysis, in Fig. 7, the calculated
values of the dimensionless normal permeability, K/d2, are
successfully compared with present experimental results and
the data collected from several sources [47–52]. Moreover,
in Fig. 8, the calculated Forchheimer coefficients for square
arrangements are compared with the present experimental
data, the numerical results of Ghaddar [39] and Papatanasiou
et al. [40] for monodisperse and bimodal fiber arrays, respec-
tively. In addition, the experimental data of Bergelin et al. [47]
(oil flowing across tube banks) are included in Fig. 8. In
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FIG. 7. (Color online) Comparison between the present numer-
ical results, collected experimental results, and data from various
sources, for normal flow through square fiber arrays.

general, the present results are in good agreement with the
collected and reported data by others.

B. 2D and 3D simple cubic structures

To the best knowledge of the authors, there are no
experimental data for moderate Reynolds flow through the
ordered 2D and 3D structures considered in the present study.
To verify our analysis, in Fig. 9, the calculated permeability
values for simple cubic arrangement are successfully com-
pared with the numerical results of Higdon and Ford [32]
and experimental data for actual 3D materials with random
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Proposed correlation

Inertial coefficient, square arrangements

FIG. 8. Comparison between the present numerical and exper-
imental results for Forchheimer coefficient with experimental and
numerical data of others.
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FIG. 9. (Color online) Comparison between the present numeri-
cal results for permeability of simple cubic arrangements with existing
numerical and experimental data of 3D materials.

fiber distribution collected from different sources. The plotted
data are based on permeability results for polymer chain in
solutions [53], glass wool randomly packed [54], stainless
steel crimps [22,54], metallic fibers [55], and aluminum metal
foams [29,56].

VII. EFFECTS OF MICROSTRUCTURE
ON FLOW PROPERTIES

Effects of microstructure and more specifically fibers
orientation on permeability and Forchheimer coefficient are
investigated in Figs. 10 and 11, respectively. As expected,
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FIG. 10. Comparison of numerical values of dimensionless per-
meability of fibrous media with Ergun equation.
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FIG. 11. Comparison of numerical values of Forchheimer coeffi-
cient of fibrous media with Ergun equation.

1D arrangements are the most anisotropic geometry and the
normal and parallel permeability of such structures provide
the lower and upper bounds for permeability of fibrous
media. Effects of microstructure are more pronounced in lower
porosities.

As discussed in previous sections, 1D and 2D geometries
are anisotropic; this can also be observed in the plotted data
in Fig. 11. In addition, the Forchheimer coefficient for 3D
structures is higher than values for 1D and 2D geometries.
The Forchheimer coefficient, which is a reflection of inertial
effects, is more influenced by microstructure in the porosity
range of ε < 0.7.

The Ergun equation (9), is a widely accepted equation for
prediction of pressure drop across granular materials. Two
main differences between fibrous and granular materials are
as follows:

(1) Shape of the particles in granular materials is spherical
while fibrous media are made up of cylindrically shaped
particles.

(2) Porosities of granular materials are in the range of
0.2–0.6, while the porosity of fibrous materials usually is in
the range of 0.6–0.999.

The present numerical results are compared with the values
predicted by the Ergun equation to figure out if this equation
is applicable to high porosity fibrous structures. Figure 10
includes the predicted values of permeability from the Ergun
equation and the present numerical results. It should be noted
that Fig. 10 has a logarithmic scale. As such, the difference
between the numerical results and the permeability values
predicted by the Ergun equation are significant. However,
since the viscous term in the Ergun equation is based on the
capillary theory leading to the Carman-Kozeny equation [9],
it qualitatively predicts the observed trends in the numerical
data.

The Forchheimer results calculated from the Ergun
equation are plotted against the current numerical results in

TABLE IV. Proposed correlations for Forchheimer coefficient in
fibrous media.

F = (a + bε)−1/c

Flow direction, microstructure a b c

Normal, square arrays (1D) −5.32 18.42 0.532
Through plane, 2D structures −0.14 5.05 0.418
In-plane, 2D structures 1.037 0.0863 0.025
Simple cubic arrangements (3D) 0.534 1.56 0.184

Fig. 11. The comparison shows that the inertial term in the
Ergun equation is only in agreement with numerical results for
3D materials with low porosities. For higher porosities Eq. (9)
is incapable of predicting the pressure drop for fibrous media.
Therefore, a series of compact correlations for 1D, 2D, and 3D
fibrous structures listed in Table IV is proposed instead. The
proposed correlations are accurate within 2% of the present
numerical results.

Using a scale analysis technique, Tamayol and Bahrami
[22] proposed compact relationships for determining the
permeability of various fibrous microstructures. As such, the
permeability relationships reported by [22] and the correla-
tions listed in Table IV enable one to predict the pressure drop
in fibrous structures for moderate Reynolds number flows, i.e.,
Re < 200.

VIII. CONCLUSIONS

The effects of porosity and fiber orientation on the viscous
permeability and the Forchheimer coefficient of monodis-
persed fibers were investigated. Fibrous porous materials were
classified into three main categories: 1D, 2D, and 3D struc-
tures. Using a unit-cell approach, the flow through the consid-
ered geometries (1D, 2D, and 3D) were solved numerically
over a wide range of Reynolds numbers (0.01 < Re < 200).
The results were then used to calculate permeability and the
inertial coefficient of the solid matrices.

An experimental study was undertaken. The permeability
and the inertial coefficient in three samples of 1D tube banks
with square arrangement were measured over a range of the
Reynolds numbers. The numerical results for permeability
and inertial coefficient were successfully compared with the
present experimental results and the data collected from
various sources. The results suggested that both permeability
and Forchheimer coefficients were functions of porosity and
fiber orientation. In addition, a comparison of the numerical
results with the Ergun equation reveals that this equation
was not accurate for highly porous materials. Using the
numerical results, compact accurate correlations were pro-
posed for determining the Forchheimer coefficient in fibrous
media.
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