Adsorbate uptake and mass diffusivity of working pairs in adsorption cooling systems

Amir Sharafian, Majid Bahrami *

Laboratory for Alternative Energy Conversion (LAEC), Mechatronic Systems Engineering, Simon Fraser University, BC, Canada V3T 0A3

A R T I C L E I N F O

Article history:
Received 11 October 2012
Received in revised form 8 December 2012
Accepted 8 December 2012

Keywords:
Adsorbate uptake rate
Mass diffusivity
RC model
Solid-side resistance

A B S T R A C T

A new closed-form model is proposed to determine the adsorbate uptake rate and the mass diffusivity of adsorbent–adsorbate pairs using experimental data of the gravimetric method based on the concept of Resistance–Capacitance (RC) analogy. The present model is verified against the available analytical solution for the adsorbate uptake for spherical micropore adsorbent particles with solid-side resistance on the surface of adsorbent. Furthermore, a new closed-form relationship for adsorbate uptake rate during the adsorption/desorption processes in adsorption cooling systems (ACS) is developed based on the linear driving force (LDF) model. The proposed adsorbate uptake rate relationship is applicable to the entire range of mass transfer Biot numbers and is as convenient-to-use as the LDF adsorbate uptake rate model. Moreover, the present model can be used to determine the mass diffusivity of spherical micropore adsorbent–adsorbate pairs with less computational time than that of the analytical series solution.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Diffusion in micropore and mesopore materials is a dominant process in a wide range of applications such as gas separation and purification [1,2], petrochemical processes [3,4], industrial air pollution control [5], air dehumidification in air conditioning systems [6,7], food industries [8,9] and biomechanics [10,11]. An emerging application of micropore and mesopore materials is in adsorption cooling systems (ACS) for air conditioning in buildings and automotive industries which have received an immense attention in the recent years mainly due to higher fuel prices, energy shortages, and stringent governmental environmental/emission regulations [12–15]. Conventional vapor compression refrigeration cycle (VCRC), used in automotive air conditioning systems, consumes a considerable power of the engine [16] to derive the compressor, which significantly increases fuel consumption. A VCRC compressor can add up to 5–6 kW peak power draw on a vehicle’s engine that is equivalent to the power required for a 1200-kg sedan cruising at 60 km/h [16]. In a conventional internal combustion engine (ICE), almost 40% of the total fuel energy is dissipated through the exhaust gas of the engine [16] in the form of waste heat. A portion of this waste heat is sufficient to run an ACS to meet the air-conditioning of a vehicle. Proper implementation of ACS in automobiles can significantly reduce the fuel consumption and minimize the carbon footprint of vehicles.

Working pairs in ACS are a combination of a sorbent material, called adsorbent, such as zeolite, silica gel and activated carbon; and a refrigerant, called adsorbate, such as water and methanol. These materials are environmentally friendly, non-toxic, non-corrosive, and inexpensive. Moreover, ACS are quiet and easy to maintain. As such, ACS are ideal candidates for conventional VCRC. However, commercialization of ACS faces major challenges; namely: (i) low specific cooling power (SCP) and (ii) poor coefficient of performance (COP) that result in heavy and bulky air-conditioning systems, which are not practical for automotive applications. Specific cooling power is the ratio of cooling power to the mass of dry adsorbent times the cycle time. Thus, SCP can be maximized by decreasing the adsorbent mass and/or reducing the cycle time. The origins of these limitations are low mass diffusivity and thermal conductivity of the adsorbent–adsorbate pairs. To improve SCP, the following approaches can be adopted:

- Improving thermal conductivity of working pairs by using new synthetic materials such as carbon nanotubes (CNT) embedded in zeolite [17].
- Increasing effective surface area of adsorber bed to increase the heat transfer rate between the exhaust gas (waste heat) and the adsorbent particles.
- Reducing cycle time by increasing adsorbate diffusion rate within the adsorbent particles during the adsorption/desorption processes.
The main objective of this study, as a fundamental block to resolve the issues currently facing ACS, is to develop an in-depth understanding of adsorbate diffusion phenomenon within the adsorbent beds. To this end, a new compact closed-form relationship is developed to determine both adsorbate uptake rate and the mass diffusivity coefficient of adsorbent–adsorbate pairs. The proposed model is verified with experimental data collected from other sources.

2. Pertinent literature

There are several experimental techniques to measure the adsorbate uptake rate and the mass diffusivity reported in the literature, including, infrared spectroscopy, chromatography, nuclear magnetic resonance (NMR) and gravimetric methods, to name a few. More detail on measurement techniques are available elsewhere, e.g. [18]. A commonly used method is thermal gravimetric technique [18]. A thermogravimetric apparatus consists of an electrical furnace, crucible, and microbalance. The dried adsorbent particles are placed in the crucible which is located at the center of the furnace; it is also connected to the microbalance. To run a test, the furnace is set at a specific temperature and the adsorbate flows inside the furnace chamber. Simultaneously, the dried adsorbent particles start to adsorb adsorbate under the adsorption isotherm process and the microbalance measures the variation of the adsorbent mass over time. This method is a time-consuming method but there is almost no technical difficulty [19]. However, the measurement does not directly yield the mass diffusivity coefficient. To obtain the value of the mass diffusivity, an appropriate analytical adsorption model is needed for the analysis. By assuming a value for the mass diffusivity, a corresponding adsorbate uptake curve can be found using the analytical model. Then, it is compared to the experimental adsorbate uptake curve. The value of the mass diffusivity in the analytical model which provides the best match with the experimental result is taken as the true value of the mass diffusivity of the adsorbent–adsorbate pair at a specific pressure and temperature [19,20]. Accuracy of this method increases by developing a proper analytical model that can predict the mass diffusivity of adsorbent–adsorbate pairs under different operating conditions.

In general, the adsorbate uptake includes a number of physical processes, adsorbate transfer from the bulk gas to the adsorbent exterior surface, called gas-side resistance, diffusion of the adsorbate molecules to the pore surface of adsorbent particle, called solid-side resistance, and a resistance associated with the adsorption process itself. Often the last two resistances are more important than the first one [20–24]. Due to these factors, different mathematical models for the adsorption kinetics under different boundary conditions have been developed. Crank [25], and Karger and Ruthven [26] developed two different models for the concentration distribution of adsorbate within a spherical micropore adsorbent particle based on:

- Isothermal adsorption with constant concentration on the surface of adsorbent.
- Isothermal adsorption with solid-side resistance on the surface of adsorbent.

Later, Lee and Ruthven [27] developed a non-isothermal adsorption model with solid-side mass resistance for highly diffusive and/or reactive adsorbent–adsorbate pairs. Ni et al. [19] measured the water uptake rate of silica gel under different operating temperatures using thermogravimetric measurements. Then, they calculated the mass diffusivity of silica gel–water using two series-based models, namely the isothermal model with solid-side mass transfer resistance and the non-isothermal model with solid-side heat and mass transfer resistances. Their curve-fitted to the experimental data indicated that both models yield the same results because the tests were conducted under the adsorption isotherm process. Furthermore, Gurgel et al. [28] studied the water uptake rate of silica gel particles with three different diameters under the adsorption isotherm process. They used the isothermal model with no solid-side mass transfer resistance on the surface of adsorbent to predict the mass diffusivity of silica gel–water pair; however, their model failed to accurately predict the experimental data.

In many applications, adsorbate concentration boundary layer on the surface of adsorbent particle cannot be neglected and the solid-side resistance should be considered. For such problems, the solution of an isothermal process with the solid-side resistance is available in [26,27,29]. In case of negligible solid-side resistance, the solution converges to the isothermal adsorption with constant concentration on the surface of adsorbent.

Besides, several numerical simulations have been conducted by different researchers. Pesaran et al. [20] and San et al. [30,31] numerically investigated the effects of solid-side mass transfer resistance on the adsorption of water vapor by a packed bed of silica gel adsorbent. The challenges associated with the numerical simulation of adsorption phenomenon are its unsteady nature, time-consuming procedure, and iterative method to find the
accurate mass diffusivity of adsorbent–adsorbate pairs. Therefore, using an analytical model that can provide the mass diffusivity of adsorbent–adsorbate pairs in less time is preferred.

Most of the available analytical solutions in the open literature are based on series-solutions with non-linear characteristic equations to find both the adsorbate uptake rate by spherical micropore adsorbent particle and the mass diffusivity of adsorbent–adsorbate pairs. In the following sections, a new compact closed-form relationship has been developed based on the concept of resistance–capacitance (RC) model. The proposed relationship is compared with the available analytical solution, and later on, is applied to the experimental data reported by Ni et al. [19] and Gurgel et al. [28] to find the adsorbate uptake rate and the mass diffusivity of silica gel–water pair under various operating temperatures and silica gel sizes. The proposed model is general and can be applied to other adsorbent–adsorbate pairs such as activated carbon–methanol and zeolite–water.

3. Problem definition

In this study, a unit cell approach is adopted by considering a single spherical micropore adsorbent particle as the representative of the whole packed bed of adsorbent particles. The unit cell (or basic cell) is the smallest volume, which can represent characteristics of the entire microstructure [32]. Fig. 1 shows a schematic of a spherical micropore adsorbent particle with the solid-side resistance on the surface of the adsorbent.

To simplify the analysis, it is assumed that the initial adsorbate concentration distribution within the adsorbent particle is uniform, and is in equilibrium with the gaseous phase adsorbate. A sudden change in the gaseous adsorbate leads to adsorbate diffusion through/from the adsorbent particle vs. time. In this study, it is assumed that:

- Adsorbate uptake rate is controlled by the diffusion mass transfer.
- Constant temperature (isothermal) process during the adsorption/desorption time.
- Constant mass diffusivity [33].
- Solid-side resistance on the surface of spherical adsorbent.
- Radial diffusion of adsorbate within the adsorbent.

4. Mathematical model

Based on the assumptions made in Section 3, the mass balance for a single spherical micropore adsorbent particle in spherical coordinate system can be expressed as follows [25,34]:

\[
\frac{\partial c}{\partial t} = \frac{D}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c}{\partial r} \right) \tag{1}
\]

For a sudden change in the adsorbate concentration around the adsorbent particle, initial and boundary conditions are:

\[
t = 0, \quad c = c_0 \tag{2}
\]

\[
r = 0, \quad \frac{\partial c}{\partial r} \bigg|_{r=0} = 0 \tag{3}
\]

\[
r = a, \quad h_m(c_w - c_s) = \frac{\partial c}{\partial r} \bigg|_{r=a} \tag{4}
\]

The total amount of adsorbate uptake by the spherical adsorbent particle is:

\[
\dot{c}(t) = \frac{2}{a^2} \int_0^a c^2 \, dr \tag{5}
\]

Using the following variables Eqs. (1)–(5) can be non-dimensionalized.

\[
c' = \frac{c - c_s}{c_w - c_s}, \quad \eta = \frac{r}{a}, \quad \text{Fo} = \frac{tD}{a^2}, \quad Bim = \frac{h_m a}{D} \tag{6}
\]

where Fo and Bim are the mass Fourier number and the mass transfer Biot number, respectively. Note that Fo is the ratio of the diffusion mass transfer to the rate of mass storage, and Bim is the ratio of the convective to the diffusive mass transfer within the solid body. Bim is generally defined for the transient mass transfer. Eqs. (7)–(10) show the non-dimensional governing equation as well as initial and boundary conditions.

\[
\frac{\partial c'}{\partial \text{Fo}} = \frac{1}{\eta^2} \frac{\partial}{\partial \eta} \left(\eta^2 \frac{\partial c'}{\partial \eta} \right) \tag{7}
\]

\[
\text{Fo} = 0, \quad c' = 0 \tag{8}
\]

\[
\eta = 0, \quad \frac{\partial c'}{\partial \eta} \bigg|_{\eta=0} = 0 \tag{9}
\]

\[
\eta = 1, \quad Bim(1 - c') = \frac{\partial c'}{\partial \eta} \bigg|_{\eta=1} \tag{10}
\]

The non-dimensional total amount of adsorbate uptake by the adsorbent particle is:

\[
\frac{m_t}{m_w} = \frac{c - c_0}{c_w - c_0} = 3 \int_0^1 c' \eta^2 \, d\eta \tag{11}
\]

where \(m_t\) and \(m_w\) are the adsorbed mass of adsorbate at time \(t\) and \(t \to \infty\), respectively.

Crank [25] and Ruthven et al. [26,29] solved Eq. (7) by method of separation of variables under the same initial and boundary conditions defined in Eqs. (8)–(10). Eq. (12) gives the concentration distribution within the spherical adsorbent particle [25,27,29].

\[
c' = \frac{2Bim}{\eta} \sum_{n=1}^{\infty} \frac{\exp\left(-\beta_n^2Fo\right) \sin(\beta_n\eta)}{\beta_n^2 + Bim(Bim - 1) \sin(\beta_n)} \tag{12}
\]

where \(\beta_n\) is the roots of Eq. (13).

\[
\beta_n \cot(\beta_n) + Bim - 1 = 0 \tag{13}
\]

The total amount of adsorbate uptake by the spherical adsorbent particle is calculated as follows:

\[
\frac{m_t}{m_w} = 1 - \sum_{n=1}^{\infty} \frac{6Bim^2 \exp\left(-\beta_n^2Fo\right)}{\beta_n^2 \left(\beta_n^2 + Bim(Bim - 1)\right)} \tag{14}
\]

The series solution in Eq. (12) has two asymptotes,

- \(Bim \to 0\) (no diffusive resistance inside the adsorbent, i.e., lumped capacitance),
- \(Bim \to \infty\) (no solid-side resistance on the surface of adsorbent).
In the limiting case of \(B_{im} \to 0 \) (lumped capacitance model), the resistance to diffusion within the solid is much less than the resistance to convective mass transfer from the solid-side resistance. Therefore, the assumption of a uniform concentration distribution within the spherical adsorbent particle is reasonable [35]. In this case, \(\beta_i \) is small and the first term in the series solution, Eq. (12), would suffice for calculations [26,29]. Eqs. (15)–(18) show the solution, where \(B_{im} \to 0 \):

\[
\cot (\beta_i) \approx \frac{1}{\beta_i} - \frac{\beta_i^3}{3} + \cdots
\]

(15)

\[
\beta_i \cot (\beta_i) - 1 \approx -\beta_i^2 = -B_{im} \quad \Rightarrow \quad \beta_i^2 = 3B_{im}
\]

(16)

\[
c^* = \exp (-3B_{im}F_0)
\]

(17)

\[
\frac{m_t}{m_{\infty}} = 1 - \exp (-3B_{im}F_0)
\]

(18)

In the limiting case of \(B_{im} \to \infty \) (no solid-side resistance on the surface of adsorbent), the solution yields to the solution of isothermal adsorption with constant concentration on the surface of the adsorbent particle. Eq. (19) gives the adsorbate concentration distribution within the spherical adsorbent particle at the limit, where \(B_{im} \to \infty \):

\[
c^* = 1 + \frac{2}{\beta_i^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \exp (-n^2 \beta_i^2 F_0) \sin (n\pi\eta)
\]

(19)

and the total amount of adsorbate uptake by the spherical adsorbent particle for \(B_{im} \to \infty \) is:

\[
\frac{m_t}{m_{\infty}} = 1 - \frac{6}{\beta_i^2} \sum_{n=1}^{\infty} \frac{\exp (-n^2 \beta_i^2 F_0)}{n^2}
\]

(20)

Roots of Eq. (13) for the first 10 terms of the series solution, Eq. (12), are tabulated in Table 1 for different mass transfer Biot numbers.

<table>
<thead>
<tr>
<th>Roots of Eq. (13)</th>
<th>Mass transfer Biot number, (B_{im})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1)</td>
<td>0</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>4.4934</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>7.7253</td>
</tr>
<tr>
<td>(\beta_4)</td>
<td>10.9041</td>
</tr>
<tr>
<td>(\beta_5)</td>
<td>14.0662</td>
</tr>
<tr>
<td>(\beta_6)</td>
<td>17.2208</td>
</tr>
<tr>
<td>(\beta_7)</td>
<td>20.3713</td>
</tr>
<tr>
<td>(\beta_8)</td>
<td>23.5195</td>
</tr>
<tr>
<td>(\beta_9)</td>
<td>26.6661</td>
</tr>
<tr>
<td>(\beta_{10})</td>
<td>29.8116</td>
</tr>
</tbody>
</table>

In the limiting case of \(B_{im} \to 0 \) (lumped capacitance model), the resistance to diffusion within the solid is much less than the resistance to convective mass transfer from the solid-side resistance. Therefore, the assumption of a uniform concentration distribution within the spherical adsorbent particle is reasonable [35]. In this case, \(\beta_i \) is small and the first term in the series solution, Eq. (12), would suffice for calculations [26,29]. Eqs. (15)–(18) show the solution, where \(B_{im} \to 0 \):

\[
\cot (\beta_i) \approx \frac{1}{\beta_i} - \frac{\beta_i^3}{3} + \cdots
\]

(15)

\[
\beta_i \cot (\beta_i) - 1 \approx -\beta_i^2 = -B_{im} \quad \Rightarrow \quad \beta_i^2 = 3B_{im}
\]

(16)

\[
c^* = \exp (-3B_{im}F_0)
\]

(17)

\[
\frac{m_t}{m_{\infty}} = 1 - \exp (-3B_{im}F_0)
\]

(18)

Fig. 2. Total amount of adsorbate uptake vs. mass Fourier number, Eq. (14).
particle and the mass diffusivity of adsorbent–adsorbate pairs [15,37–39]. However, its application range is limited to \(B_{im} \rightarrow \infty \). Moreover, it is not valid for small mass transfer Biot numbers [20].

A careful observation of the adsorbate uptake in spherical adsorbent particle, shown in Fig. 2, reveals similarities with charging of an electrical capacitor. Therefore, we propose a solution for the mass transfer using the solution of the corresponding electrical circuit. The analogous parameters between the heat/mass transfer and electrical circuit are summarized in Table 3.

In the same way, the adsorbate uptake by the spherical micropore adsorbent particle corresponding to the electrical circuit is shown in Fig. 4b, where \(C \) is the mass capacitance, \(R_1 \) is the solid-side resistance, and \(R_2 \) is the diffusive resistance within the spherical micropore adsorbent particle, respectively.

With reference to Table 3, the mass capacitance of a spherical micropore adsorbent particle is:

\[
C = \frac{4}{3} \pi \varepsilon \alpha a^3
\]

(23)

where, \(\varepsilon \) and \(\alpha \) are the porosity and the radius of the micropore adsorbent particle, respectively. Moreover, the solid-side resistance, \(R_1 \), and the diffusive resistance within the spherical micropore adsorbent particle, \(R_2 \), are shown in Table 4.

\[
R = R_1 + R_2
\]

(24)

Eq. (25) shows the simplified multiplication of the mass capacitance, Eq. (23), and the total resistance, Eq. (24).

Table 2

Maximum relative difference between the adsorbate uptake curves calculated by finite number of terms of the series solution, Eq. (14), compared with the first 10 terms.

<table>
<thead>
<tr>
<th>No. of terms in Eq. (14)</th>
<th>Mass transfer Biot number, (B_{im})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>4.1%</td>
</tr>
<tr>
<td>2</td>
<td>3.6%</td>
</tr>
<tr>
<td>4</td>
<td>2.5 × 10⁻³</td>
</tr>
<tr>
<td>6</td>
<td>2.0 × 10⁻⁴</td>
</tr>
<tr>
<td>8</td>
<td>3.4 × 10⁻⁴</td>
</tr>
</tbody>
</table>

Table 3

Analogous parameters between heat/mass transfer and electrical circuit.

<table>
<thead>
<tr>
<th>Mass transfer</th>
<th>Heat transfer</th>
<th>Electrical circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential</td>
<td>(\Delta c) (mol/m³)</td>
<td>(\Delta T) (K)</td>
</tr>
<tr>
<td>Flux</td>
<td>(f') (mol/m²s)</td>
<td>(q') (W/m²)</td>
</tr>
<tr>
<td>Resistance</td>
<td>(R_{mcp}) (K/m)</td>
<td>(\rho) (K/W)</td>
</tr>
<tr>
<td>Capacitance</td>
<td>(C) (m³/F)</td>
<td>(m_{c}) (J/K)</td>
</tr>
</tbody>
</table>

Fig. 3. Effect of truncating the series solution on the adsorbate uptake curve for different \(B_{im} \).
By substituting Eq. (25) in Eq. (22) and using the analogy between the mass transfer and the electrical circuit, the final RC model solution for charging a spherical adsorbent particle becomes:

\[
\frac{m_t}{m_{\infty}} = 1 - \exp \left(-\frac{3 \frac{hm_a}{D}}{1.0 + \frac{hm_a}{D}} \right)
\]

(26)

Eq. (26) can be further simplified by substituting the non-dimensional parameters defined in Eq. (6). Thus, the total amount of adsorbate uptake by a spherical adsorbent particle becomes:

\[
\frac{m_t}{m_{\infty}} = 1 - \exp \left(-\frac{3Bi_{in}Fo}{1.0 + \frac{hm_a}{D}} \right)
\]

(27)

Eq. (27) has two asymptotes quite similar to those of Eq. (14). In the limiting case of \(Bi_{in} \to 0\) (lumped capacitance model), Eq. (27) yields the exact same result of Eq. (18). In the limiting case of

\[
RC = 1.0 + \frac{hm_a}{D} \left[\frac{3}{3 + \frac{hm_a}{D}} \right]
\]

(25)
\(B_i \rightarrow \infty \) (no solid-side resistance on the surface of adsorbent), Eq. (27) yields Eq. (28) which should be equivalent to the linear driving force (LDF) model, i.e., Eq. (21).

\[
m_t / m_\infty = 1 - \exp(-3\lambda F_0)
\]

(28)

As a result, \(\lambda \) in Eq. (28) should be equal to five. Hence, the final closed-form relationship for the adsorbate uptake by the spherical micropore adsorbent particle for the entire range of mass transfer Biot numbers is:

\[
m_t / m_\infty = 1 - \exp\left(-\frac{3B_i m F_0}{1.0 + 0.2B_i m}\right)
\]

(29)

A comparison between the present model, Eq. (29), and the analytical series solution for different values of \(B_i m \) are presented in Fig. 5. It can be seen that the present model has a good agreement with the analytical series solution for the entire range of mass transfer Biot numbers. The average relative difference between the present model and the analytical series solution varies between 0% and 1.34% for different \(B_i m \). It should be mentioned that the maximum relative difference in all cases are reported for \(F_0 > 0.1 \).

To find the mass diffusivity of the adsorbent–adsorbate pairs by using experimental data of the gravimetric method, the mass transfer coefficient, \(h_m \), should be known. To this end, an analogy between heat and mass transfer can be established under specific conditions, commonly referred to as Chilton–Colburn J-factor analogy [41]. To establish a valid heat–mass convection analogy, the mass flux should be low such that the mass transfer between the fluid and the surface does not affect the flow velocity [33]. In case of diffusion within the micropore materials, the low mass flux process assumption is valid and, as a result, the analogy between the convective heat and mass transfer is reasonable. Thus, Eq. (30) developed for the convective heat transfer around a spherical particle, can be applied to convective mass transfer around a spherical micropore particle, Eq. (31) [42].

\[
N_u = \frac{h(2\alpha)}{k} = 2.0 + 0.6Re^{0.5}Pr \quad 0 \leq Re < 200, \quad 0 < Pr < 250
\]

(30)

\[
Sh = \frac{h_m(2\alpha)}{D_{ij}} = 2.0 + 0.6Re^{0.5}Sc^{0.5} \quad 0 \leq Re < 200, \quad 0 < Sc < 250
\]

(31)

where \(Sh \) is the Sherwood number, \(Re \) is the Reynolds number based on the particle diameter and \(Sc \) is the Schmidt number which is given by Eq. (32), respectively.

\[
Sc = \frac{\nu}{D_{ij}}
\]

(32)

where \(D_{ij} \) is the binary mass diffusivity of ideal gas mixture. Eq. (33) gives the binary mass diffusivity of water vapor in the air [43].

\[
D_{i,H_2O, air}(T,P) = 1.87 \times 10^{-10} \frac{T^{2.072}}{P} \left(\frac{m^2}{s} \right) \quad 280K \leq T < 450K
\]

(33)

where \(P \) is the total pressure in atmosphere and \(T \) is the mixture temperature in \(K \), respectively. The Schmidt number for diffusion of water vapor in the air is about 0.6 [35]. At the end, the mass transfer coefficient, \(h_m \), is given by Eq. (34).
\[h_m = D_l (2.0 + 0.6Re^2Sc^1)/(2a) \] (34)

There is no relationship to calculate the mass transfer Biot number directly. Hence, a value for the mass diffusivity should be found based on the experimental data. Accordingly, the mass transfer Biot number can be found using Eqs. (6) and (34).

\[Bim = D_l (2.0 + 0.6Re^2Sc^1)/(2D) \] (35)

6. Results and discussion

The proposed closed-form relationship is a general transient mass diffusion model applicable to the entire range of Bim and can be used in a wide range of applications to predict the transient adsorption/desorption processes in adsorption cooling systems (ACS) and to calculate the mass diffusivity of micropore adsorbent–adsorbate pairs.

6.1. Non-equilibrium adsorbate uptake in ACS

One of the applications of the present model, Eq. (29), is to predict the total amount of adsorbate uptake during the adsorption/desorption processes. The non-equilibrium amount of adsorbate uptake during the adsorption/desorption processes is mainly expressed by \(\omega \) which is the ratio of mass of adsorbate to the mass of dry adsorbent [15,37–39]. To make the present model, Eq. (29), compatible to this definition, Eq. (36) is introduced.

\[\frac{m_t}{m_{\infty}} = \frac{m_t/m_{dry \, adsorbent}}{m_{\infty}/m_{dry \, adsorbent}} = \frac{\omega}{\omega_{eq}} = 1 - \exp \left(- \frac{3BimFo}{1.0 + 0.2Bim} \right) \] (36)

where \(\omega_{eq} \) is the equilibrium adsorbate uptake at specific temperature and pressure. To implement Eq. (36) in the dynamic modeling of ACS thermodynamic cycle, adsorbate uptake rate is required. Eq. (37) gives the adsorption uptake rate by differentiating Eq. (36) with respect to time.

\[\frac{d\omega}{dt} = \frac{3Bim}{1.0 + 0.2Bim} \frac{D}{a^2} (\omega_{eq} - \omega) \] (37)

Similarly, the adsorbate uptake rate based on the LDF model, Eq. (21), is given by Eq. (38) that is commonly used in dynamic modeling of ACS thermodynamic cycles and is valid for \(Bim \to \infty \) (no solid-side resistance on the surface of adsorbent) [15,37–39].

\[\frac{d\omega}{dt} = 15D \frac{D}{a^2} (\omega_{eq} - \omega) \] (38)

It is noteworthy that the proposed adsorbate uptake rate, Eq. (37), is as convenient-to-use as the LDF adsorbate uptake rate, Eq. (38); also it is applicable to the entire range of mass transfer Biot numbers. Eq. (37) can be easily applied to dynamic modeling of ACS thermodynamic cycles for different mass transfer Biot numbers.

6.2. Calculation of mass diffusivity of spherical micropore adsorbent–adsorbate pair

The other application of the present model, Eq. (29), is to find the mass diffusivity of adsorbent–adsorbate pairs in ACS applications. In this study, the experimental data of water uptake by silica gel particles reported by Ni et al. [19] and Gurgel et al. [28] are used to find the mass diffusivity of silica gel–water pair by the present model, Eq. (29).

Ni et al. [19], used a thermal gravimetrical apparatus to measure the total water uptake (adsorbate) in a 2 mm silica gel
adsorbent particles under atmospheric pressure and different operating temperatures. The silica gel particles were placed far from the others with enough spacing to minimize effects of the interaction among them. The moist air average velocity in the experimental work of [19] was 9.3 × 10⁻³ m/s and the maximum uncertainty for the mass diffusivity was 25%.

Shown in Fig. 6 is the total amount of water uptake by the silica gel adsorbent particles in operating temperatures of 22.2, 49.5 and 79.6 °C.

Fig. 6 shows that the water uptake curve calculated by the present model is in excellent agreement with the experimental data of [19] under the assumption of constant specific mass diffusivity. As it can be seen in Fig. 6, by increasing the operating temperature, the mass transfer coefficient, \(h_m \), and the mass diffusivity, \(D \), of silica–water pair increases while the mass transfer Biot number decreases, which is mainly due to a higher increase in the mass diffusivity than the mass transfer coefficient.

The present model, also, is applied to determine the mass diffusivity of the working pair in the experimental data of Gurgel et al. [28] for three different sizes of silica gel–water pairs at a constant temperature of 22 °C and atmospheric pressure. The uncertainty analysis and the moist air average velocity in the experimental work of Gurgel et al. [28] were not reported. To perform the analysis, the same average velocity of 9.3 × 10⁻³ m/s reported by Ni et al. [19] is used in the calculations. Gurgel et al. [28] used the model of adsorbate uptake with constant concentration on the surface of adsorbent. Fig. 7 shows the water uptake curves produced by the present model, Eq. (29), for spherical silica gel adsorbent particles with diameters of 2.3, 4.0 and 5.0 mm at temperature of 22 °C [28].

As shown in Fig. 7, the water uptake curves calculated by the present model under the constant mass diffusivity have a good agreement with the experimental data reported by Gurgel et al. [28]. The maximum and average relative difference between the present model and the experimental data are 3.3% and 1.6% for 2.3 mm silica gel particle, 4.0% and 1.9% for 4.0 mm silica gel particle and 7.2% and 3.0% for 5.0 mm silica gel particle.

7. Summary and conclusions

In this study the adsorbate diffusion within the spherical micropore adsorbent particle with the solid-side resistance on the surface of adsorbent was investigated. Using an analogy between the mass transfer and electrical circuits, a resistance–capacitance (RC) compact model has been introduced to simulate behavior of adsorbate uptake by spherical micropore adsorbent particles. Calculated adsorbate uptake curves by the proposed model, Eq. (29), and the series solution, Eq. (14), showed a good agreement. The proposed model was also used to determine both adsorbate uptake rate and the mass diffusivity coefficient of adsorbent–adsorbate pairs based on the measured adsorbate uptake curves by Ni et al. [19] and Gurgel et al. [28].

The following are the highlights of the present study:

- The proposed new model has a good agreement with the analytical series solution with an average relative difference of 1.34% for the entire range of mass transfer Biot numbers.
- Non-equilibrium adsorbate uptake rate was proposed for calculation of uptake rate during the adsorption/desorption processes in ACS for different values of mass transfer Biot numbers.
- The proposed RC-based model is able to determine the mass diffusivity of spherical micropore adsorbent–adsorbate pairs using a compact relationship compared to the existing analytical series solution.

Acknowledgments

The authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Automotive Partnership Canada Grant No. APCF 401826-10.

References