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In most engineering applications, e.g., hybrid electric vehicles, the multilayered electronic packages generate
arbitrary heat over a transient thermal duty cycle. In addition, the outer surface of such media endures time-
dependent temperature as a result of variable coolant temperature during driving/duty cycles. As such, a new
analyticalmodel is developed to predict transient heat conduction insidemultilayered compositemediawith arbitrary
heat generation inside the layers. It is assumed that the temperature of the outer surface varies periodically over time.
New compact closed-form relationships are developed for calculating 1) the temperature distribution inside
multilayered media, 2) the average temperature of each layer, and 3) the interfacial heat flux. As an example, the
methodology is applied to a two-concentric-cylinder composite. A detailed parametric study is conducted, and
the critical values for the dimensionless parameters are evaluated; beyond these values, the temperature field inside
the media is not affected considerably for any combination of other variables. It is shown that there is an optimum
angular frequency that maximizes the amplitude of the interfacial heat flux. An independent numerical simulation is
also performed using commercially available software ANSYS; the maximum relative difference between the
obtained numerical data and the analytical model is less than 2%.

Nomenclature
A = matrix defined in Eq. (A5)
An = constant, Eqs. (A19) and (A20)
Cjn = integration coefficient, Eq. (A3)
Djn = integration coefficient, Eq. (A3)
F = constant, Eq. (A8)
Fo = Fourier number, α1t∕x21
G = arbitrary function of η, Eq. (A11)
Gn = constants defined in Eq. (A16)
H = constant, Eq. (A11)
h = contact conductance between layers, W∕m2 · K
i = complex variable,

!!!!!!
−1
p

J0 = zero-order Bessel function of first kind
J1 = first-order Bessel function of first kind
Kj = dimensionless thermal conductivity ratio, kj!1∕kj
kj = thermal conductivity of the jth layer,W∕m · k
M = number of layers
P = matrix defined in Eqs. (A5), (A6a), and (A6c)
p = integer number, where p is equal to 0, 1,

and 2 for slabs, cylinders, and spheres, respectively
Q = matrix defined in Eqs. (A5), (A6b), and (A6d)
q"ηj = dimensionless interfacial heat flux at interface

of jth layer, where η is equal to ηj, #∂θj∕∂η$ηj%xjx1
_q = volumetric heat generation inside jth layer,W∕m3

Rjn = nth eigenfunction associated with λn for jth layer,
Eq. (A1)

Tj = temperature of jth layer of composite media, K
t = time, s
w = weight function, Eqs. (A9)

xM = space coordinate at outer-boundary surface
xj = values of space coordinate at inner boundary

surfaces, j % 0; 1; 2; : : : ;M, (m)
x0 = coordinate origin
Y0 = zero-order Bessel function of second kind
Y1 = first-order Bessel function of second kind
αj = thermal diffusivity of jth layer, m2∕s
Γ = function of Fourier number, Eq. (A13)
ΔTR = amplitude of imposed temperature, K
Δφ = thermal lag
η = dimensionless coordinate, x∕x1
ηj = dimensionless coordinate at boundaries, xj∕x1
θ = dimensionless temperature, #T − T0$∕ΔTR
θj = dimensionless temperature of jth layer, #Tj − T0$∕ΔTR
Λj = dimensionless contact conductance
λ = separation constant
λn = nth eigenvalue
μj = dimensionless thermal diffusivity ratio
ξ = dummy variable of the integral, Eq. (A21)
ϕjn = solution to Eq. (A1), corresponding to λn
ψ jn = solution to Eq. (A1) corresponding to λn
Ω = angular frequency, rad∕s
ω = dimensionless angular frequency

Subscripts

0 = initial condition
j = jth layer defined in domain xj−1 ≤ x ≤ xj,

where j is equal to 1; 2; : : : ;M
n = integer number, positive
R = reference value

Superscript

0 = first derivative with respect to η

I. Introduction

I NTEGRATION of component thermal management technologies
for new propulsion systems is a key to developing innovative

technology for the next-generation hybrid electric vehicles (HEVs),
electric vehicles (EVs), and fuel cell vehicles (FCVs). Current hybrid
systems use a separate cooling loop for the Power Electronics
and Electric Machine (PEEM) [1,2]. However, using an integrated
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cooling loop for a HEV addresses the cost, weight, size, and fuel
consumption [2–4]. Typically, steady-state scenarios are considered
for the thermalmanagement of conventional vehicles [3,5]. However,
within the context of integrated thermal management, the evaluation
over transient thermal duty cycles is important because certain com-
ponents may not experience peak thermal loads at the same time and
over steady-state cases [2]. For critical semiconductor devices such as
insulated gate bipolar transistors (IGBTs) in a HEV,McGlen et al. [6]
predicted heat fluxes of 150–200 W∕cm2 and pulsed transient heat
loads with heat fluxes up to 400 W∕cm2. One important aspect of the
reliable thermal design of the dynamic multilayered systems of the
PEEM is the ability to obtain an accurate transient temperature
solution of the packages beforehand over a duty cycle in order to
sustain the reliability of the packages, albeit for a more simplified
configuration.
To successfully integrate the dynamic PEEM cooling systems

concept into vehicle applications, the thermal limitations of the
semiconductor devicesmust be addressed [7].According to Samsung
technologists, the next-generation semiconductor technology costs
about $10 billion to create [7]. Alternatively, use of multilayered
packages is recognized as an innovative technique for the thermal
management of semiconductor devices, which also results in im-
proved performance through the lowering of signal delays and
increasing of processing speed. However, because of the dynamic
unsteady characteristics of the power electronics inside HEVs/EVs/
FCVs, accumulation of excessive heat within the multilayered
packages is the main issue that needs to be addressed. This is at-
tributed to the dynamic heat transfer characteristics aswell as variable
temperature of the interface of coolant and the composite over a duty
cycle [7–9].
Transient heat conduction in a composite medium has been the

subject of numerous studies, e.g., [8–28]. Different analytical ap-
proaches were adopted to analyze transient heat conduction in
a multilayered composite including the Laplace transform method
[12], quasi-orthogonal expansion technique [13–19], Green’s func-
tion approach [20], and finite integral transform technique [21]. Tittle
[14] presented the concept of quasi orthogonality, by which orthog-
onal eigensets are constructed from nonorthogonal ones in composite
media. Recently, de Monte [23–28] published a series of papers on
transient thermal characteristics of a composite slab under external
convective cooling using a natural analytic approach [22]. He also
described and compared the aforementioned analytical methods in
[22]. Although encountered quite often in practice, time-dependent
boundary conditions always posed challenge to the analysis of
transient heat conduction in multilayered composites [23–25].
The pertinent literature has been limited to constant boundary
conditions, i.e., isothermal, isoflux, or convective cooling. To the best
of our knowledge, there are only few works on transient heat
conduction in multilayered composites subjected to time-dependent
boundary conditions and arbitrary heat generations; a summary of the
literature is presented in Table 1. Our literature review indicates the
following:

1) There is no model to predict the thermal behavior of a com-
posite medium with heat generation under time-dependent boundary
conditions.
2) The interfacial heat flux of a composite medium with heat

generation has not been reported, when surface temperature varies
periodically over time.
3) Nomodel has been developed to determine optimum conditions

that maximize the heat transfer rate of a composite multilayered
system under arbitrary surface temperature.
4) No parametric study exists in the literature to investigate effects

of the thermophysical and geometrical parameters on the heat transfer
characteristics of composite media.
In this study, a new analytical model is developed for Cartesian,

cylindrical, and spherical coordinates. The present model accurately
predicts 1) the temperature distribution in the layers; 2) the average
temperature of each layer; and 3) the interfacial heat flux, when an
arbitrary temperature is imposed on the surface of a multilayered
medium. Arbitrary heat generations inside each layer are taken into
account. This paper provides an in-depth understanding of transient
dynamic conduction inside a composite medium consisting of an
arbitrary number of layers with different thermophysical properties.
In particular, critical values for thermophysical and salient geo-
metrical parameters are determined beyond which the temperature
field is not affected considerably. Moreover, a set of optimum
conditions is determined that establishes a maximum interfacial heat
transfer rate.
To develop the present analytical model, a quasi-orthogonal

expansion technique [14] is used. It is assumed that the boundary
(surface) temperature varies harmonically. Following [16], a non-
standard method of separation of variables is employed, and all the
layers are treated as one region with discontinuities at the interfaces.
The associated discontinuous-weighting functions are found tomake
the resulting eigenfunctions orthogonal. As such, temperature dis-
tributions inside a multilayered region under cyclic temperature can
be obtained. It is noteworthy that any type of arbitrary boundary
condition can be decomposed into simple oscillatory functions using
a Fourier series transformation [26]. Since the governing equations
are linear, the results of this study can be extended to calculate the
transient response of multilayered composite media under dynam-
ically varying surface temperature, using a superposition technique.

II. Governing Equations
As mentioned before, for the sake of effective thermal manage-

ment of multilayered packages inside Advanced Power Electronics
and Electric Machines (APEEM) over a duty cycle, it is necessary to
obtain the temperature distribution inside the packages, albeit for a
more simplified configuration. Therefore, in this study, composite
slabs, concentric cylinders, and spheres are taken into account as
simplified geometries representing the thermal behavior of com-
posite packages in APEEM. It should be noted that the coolant
temperature varies dynamically over a duty cycle, which in turn
results in a variable surface temperature of the composite packages.

Table 1 Summary of the existing models for unsteady multilayered conduction

Author(s) Boundary condition Notes
Mayer [13] Convective cooling ✓ Reported temperature distribution inside a composite slab

No explanation for the orthogonality factors
Olek et al. [16] Step surface temperature/heat flux ✓ Reported temperature distribution inside a composite cylinder

Limited to a two-layer cylinder
Olek [18] Convective cooling ✓Reported temperature distribution for multiregion heat transfer in a generic coordinate system

Limited to homogeneous-type boundary conditions
De Monte [22] Convective cooling ✓ Reported temperature distribution inside a composite medium in a generic coordinate

Limited to homogeneous-type boundary conditions
Lu et al. [23,24] Time-dependent convective cooling ✓ Reported temperature distribution inside a composite cylinder/slab

✓ Developed a closed-form model for the transcendental equation of eigenvalues
✓ Did not consider heat generation inside the layers
✓ Complex Laplace-type integral equations should be solved to account for the time-dependent
boundary condition
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Therefore, the problem boils down to consideration of a multilayered
package that undergoes a thermal transient as a result of arbitrary
heat generations inside the layers and a dynamic outer-boundary
temperature. Shown in Fig. 1 is a multilayered composite region
involving M parallel layers, i.e., slabs, concentric cylinders, or
spheres, respectively. We assume a perfect thermal contact between
the layers, which results in the continuity of temperature and heat flux
at the interfaces. The effect of thermal contact resistance between the
layers for homogenized boundary conditions was studied by Ozisik
[27] and can be applied to the present model as indicated in
Appendix B of this study. In addition, without loss of generality, it is
assumed that the surface x0 represents the coordinate origin, x0 % 0.
In the case of composite slabs, x % x0 is thermally insulated, while it
is the symmetry line in case of concentric cylinders and the center in
case of spheres. Moreover, the layer boundaries in the x direction are
x1; x2; : : : ; xj, where j % 1; 2; : : : ;M. Let kj and αj be the thermal
conductivity and the thermal diffusivity of the jth layer, respectively.
Initially, the body, which is confined to the domain x0 ≤ x ≤ xM, is at
a uniform temperature T0. Suddenly, at t % 0, the outer surface,
x % xM, is subjected to a periodic temperature varying in a cosine
manner over time with an amplitude of ΔTR:

TM % T0 !ΔTR cos#Ωt$ (1)

Other assumptions used in the proposed unsteady heat-conduction
model are as follows:
1) There are constant thermophysical properties for allM layers.
2) The thickness of the multilayered solid is sufficiently thin in the

x direction compared to the other directions, i.e., one-dimensional
heat transfer.
As such, the mathematical formulation of the transient heat-

conduction problem herein under discussion is

∇2Tj#x; t$ %
1

αj

∂Tj#x; t$
∂t

! _qj#x$
kj

xj−1 ≤ x ≤ xj; t > 0

j % 1; 2; : : : ;M (2)

The boundary conditions are

∂T1#0; t$
∂x

% 0 at x % 0; t > 0 (3a)

Tj#xj;t$%Tj!1#xj;t$ j%1;2;3; : : : ;#M−1$ and t>0 (3b)

kj
∂Tj#xj; t$

∂x
% kj!1

∂Tj!1#xj; t$
∂x

j % 1; 2; 3; : : : ; #M − 1$

and t > 0 (3c)

TM#xM; t$ % T0 ! ΔTR cos#Ωt$ at x % xM; t > 0 (3d)

The initial condition is

Tj#x; 0$ % T0 xj−1 ≤ x ≤ xj;

j % 1; 2; : : : ;M; and t % 0 (3e)

where

∇2 ≡
1

xp
∂
∂x

"
xp

∂
∂x

#
(4)

is the one-dimensional Laplace differential operator andΔTR &K' and
Ω &rad∕s' are the amplitude and the angular frequency of the imposed
temperature at the outer surface, x % xM, respectively. It should be
noted that p takes the values of 0, 1, and 2, for Cartesian, cylindrical,
and spherical coordinate systems, respectively.
We define the following dimensionless variables:

Fo % α1t
x21
; η % x

x1
; μj %

αj
α1
;

gj#η$ % μj
_q#x$jx21
kjΔTR

; Kj %
kj!1
kj

; θ % T − T0

ΔTR
; ω % Ω

x21
α1

Therefore, the dimensionless form of Eq. (2) becomes

a) b)

c)
Fig. 1 Schematic of a multilayer composite in a) Cartesian, b) cylindrical, and c) spherical coordinate systems.
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∂θj
∂Fo
% μj

1

ηp
∂
∂η

"
ηp

∂θj
∂η

#
! gj#η$ 0 ≤ η ≤

xM
x1
; Fo > 0

j % 1; 2; : : : ;M (5)

subjected to the following dimensionless boundary conditions:

∂θ1
∂η
% 0 at η % 0; Fo > 0 (6a)

θj#η % xj∕x1; Fo$ % θj!1#η % xj∕x1; Fo$
j % 1; 2; 3; : : : ; #M − 1$; and Fo > 0 (6b)

∂θj#η%xj∕x1;Fo$
∂η

%Kj
∂θj!1#η%xj∕x1;Fo$

∂η
j%1; 2; 3; : : : ; #M−1$; and Fo>0 (6c)

θM % cos#ωFo$ at η % xM
x1
; Fo > 0 (6d)

The dimensionless initial condition inside the medium is

θj#η; 0$ % 0
xj−1
x1

≤ η ≤
xj
x1
; j % 1; 2; 3; : : : ;M

and Fo % 0 (6e)

It should be noted that, conceptually, the Fourier number Fo is the
ratio of diffusive/conductive transport rate by the quantity storage
rate and arises from nondimensionalization of the heat equation, see
[27] for more detail.

III. Model Development
A new model is developed to predict the thermal response of

a multilayered composite in Cartesian, cylindrical, and spherical co-
ordinates under periodic time-dependent surface temperatures.
The methodology is presented for 1) a composite medium with an
arbitrary number of layers, see Appendix A, and then 2) two con-
centric cylinders as examples; a similar approach can be taken for
other geometries and layers. In should be noted that the one-
dimensional unsteady heat-conduction model developed here cannot
be applied to nonaxisymmetric composite cylinders and spheres.
In Appendix A, a general solution is presented for a one-

dimensional transient heat-conduction problem inside a multilayered
composite medium of M layers with different thermophysical and
geometrical properties, subjected to a periodic boundary temperature
at the outer surface. The solution is presented in Cartesian, cylin-
drical, and spherical coordinate systems. In this section, as a solution
example, the aforementioned methodology is applied to investigate
the transient thermal response of two concentric cylinders. With
reference to Table 2, for the case of a two-region cylinder, p % 1 and
M % 2, the eigenfunctions are as given as

Rn#η$ %
$
R1n % J0#λnη$
R2n % C2nJ0#λnη∕

!!!!!
μ2
p $ !D2nY0#λnη∕

!!!!!
μ2
p $ (7)

Applying the boundary conditions and taking Eq. (A4) into
consideration, the matrices A and v can be determined as

A %

2
6664

J0#λn$ −J0
%

λn!!!!
μ2
p
&

−Y0

%
λn!!!!
μ2
p
&

−J1#λn$ K1!!!!
μ2
p × J1

%
λn!!!!
μ2
p
&

K1!!!!
μ2
p × Y1

%
λn!!!!
μ2
p
&

0 J0
%
λnη2!!!!
μ2
p
&

Y0

%
λnη2!!!!
μ2
p
&

3
7775

3×3

(8)

v % & 1 C2n D2n 'T (9)

where η2 denotes the thickness ratio, i.e., η2 % x2∕x1. Based on
Eq. (A7), the following transcendental equation is obtained to eval-
uate the eigenvalues:

−
Y0#λnη2∕

!!!!!
μ2
p $

J0#λnη2∕
!!!!!
μ2
p $

% &J0#λn$×Y1#λn∕
!!!!!
μ2
p $'−# !!!!!

μ2
p ∕K1$× &Y0#λn∕

!!!!!
μ2
p $×J1#λn$'

&# !!!!!
μ2
p ∕K1$×J0#λn∕

!!!!!
μ2
p $×J1#λn$'− &J0#λn$×J1#λn∕

!!!!!
μ2
p $'

(10)

The constants C2n and D2n are evaluated by applying Eq. (A4):

C2n%
&J0#λn$×Y1#λn∕

!!!!!
μ2
p $'− # !!!!!

μ2
p ∕K1$× &Y0#λn∕

!!!!!
μ2
p $×J1#λn$'

&J0#λn∕
!!!!!
μ2
p $×Y1#λn∕

!!!!!
μ2
p $'− &Y0#λn∕

!!!!!
μ2
p $×J1#λn∕

!!!!!
μ2
p $'
(11a)

D2n%
# !!!!!

μ2
p ∕K1$× &J0#λn∕

!!!!!
μ2
p $×J1#λn$'− &J0#λn$×J1#λn∕

!!!!!
μ2
p $'

&J0#λn∕
!!!!!
μ2
p $×Y1#λn∕

!!!!!
μ2
p $'− &Y0#λn∕

!!!!!
μ2
p $×J1#λn∕

!!!!!
μ2
p $'
(11b)

Using Eqs. (A9) and (A10), the following relationships are obtained
to find the discontinuous-weighting functions:

w#x$ % η
μj
Fj; F1 % 1; F2 % K1 j % 1; 2 (12)

Thus, with respect to Eq. (A19), the temperature distribution inside
the entire medium is obtained as

θj#η; Fo$ % cos#ωFo$

!
X∞

n%1
Rjn#η$

8
<
:
Ane

−#λ2nFo$−

En
h
ω×cos#ωFo$−λ2n×sin#ωFo$

λ4n!ω2

i
! Gn

λ2n

9
=
;

j % 1; 2 (13)

whereR1n andR2n are evaluated byEq. (7) and the coefficientsAn are
obtained by Eq. (A20). Moreover, regarding Eq. (A15), the
coefficients En can be obtained as follows:

En % ω ×

R
1
0 ηR1n#η$ dη! K1

μ2

R η2
1 ηR2n#η$ dηR

1
0 ηR

2
1n#η$ dη! K1

μ2

R η2
1 ηR2

2n#η$ dη
(14)

As indicated by Eq. (A21), the average temperature of the inner
cylinder can be determined by the following relationship:

Table 2 The linearly independent solutions ϕjn!η" and ψjn!η"
of Eq. (A3) for different geometries

P (geometry) ϕjn#η$ ψ jn#η$

0 (Cartesian) cos
%
λnη!!!!μjp
&

sin
%
λnη!!!!μjp
&

1 (cylindrical) J0
%
λnη!!!!μjp
&

Y0

%
λnη!!!!μjp
&

2 (spherical) 1
η sin

%
λnη!!!!μjp
&

1
η cos# λnη!!!!μjp $
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!θ1#ω; Fo$ % cos#ωFo$

!
X∞

n%1

J1#λn$
λn

8
<
:
Ane

−#λ2nFo$−

En
h
ω×cos#ωFo$−λ2n×sin#ωFo$

λ4n!ω2

i
! Gn

λ2n

9
=
; (15)

The interfacial heat flux for this case can be obtained by the following
equation, see Eq. (A22):

q"η1 %
∂θ1
∂η

''''
η1%1

%
X∞

n%1
&−λn × J1#λn$'

8
<
:
Ane

−#λ2nFo$−

En
h
ω×cos#ωFo$−λ2n×sin#ωFo$

λ4n!ω2

i
! Gn

λ2n

9
=
; (16)

It can be shown that at the limit where ω → 0, i.e., the isothermal
outer-boundary temperature, Eq. (13) reduces to

θj#η; Fo$ % 1!
X∞

n%1
Rjn#η$

(
Ine

−#λ2nFo$ ! Gn
λ2n

)
j % 1; 2 (17)

where

In % −
R
1
0 ηR1n#η$ dη! K1

μ2

R η2
1 ηR2n#η$ dηR

1
0 ηR

2
1n#η$ dη! K1

μ2

R η2
1 ηR2

2n#η$ dη
−
Gn
λ2n

(18)

Equation (17) is the solution to the temperature distribution inside
two concentric cylinders with heat generation under the step
(isothermal) surface temperature as represented by Olek et al. [16].
In addition, when ω → 0, without heat generations gj#η$ % 0,

and the same thermophysical properties for both layers, Eq. (13)
reduces to

θ#η; Fo$ % 1 − 2
X∞

n%1

J0#λnη$
λnη2J1#λnη2$

× exp#−λ2nFo$ (19)

where λn are the positive roots of J0#λnη2$; see Eq. (10). This is the
solution for the temperature distribution inside a solid cylinder of
infinite length, subjected to a step (isothermal) surface temperature;
e.g., see Carslaw and Jaeger [12].

IV. Numerical Study
To verify the proposed analytical solution, an independent nu-

merical simulation of the unsteady one-dimensional heat conduction
inside two concentric cylinders is conducted using the commercial
software ANSYS. A user-defined code (UDF) is written to apply the
periodic surface temperature, Eq. (1). Furthermore, the assumptions
stated in Sec. II are used in the numerical analysis. Grid independency
of the results is also verified by using three different grid sizes, namely,
1878, 6362, and 12,000 cells. Since there was a little difference
between the simulation results from the fine- and medium-sized grids
(only1%at themost), themediumgrid sizewas chosen formodeling to
reduce the computational time. Besides, in the numerical analysis, the
thermal contact resistance between the layers is neglected. In other
words, it is assumed that there is a perfect thermal contact between the
layers, as indicated by Eq. (3c). The numerical domain, boundary
conditions, and the corresponding mesh are shown in Fig. 2. The
geometrical and thermal properties used in the baseline case for the
numerical simulation are listed in Table 3. The maximum relative
difference between the analytical results and the numerical data is less
than 2%, which is discussed in detail in Sec. V.

V. Parametric Study
In this section, a comprehensive parametric study is conducted to

investigate the effects of different parameters on the thermal response
of a multilayered composite medium. The analytical results obtained
in Sec. III for two concentric cylinders are represented here in
graphical form and compared with the numerical data obtained in
Sec. IV. As such, the effect of various dimensionless parameters on
the thermal characteristics of the system is studied. The dimen-
sionless variables affecting the thermal behavior of the system are
1) heat generation, 2) the thermal conductivity ratio, 3) the thermal
diffusivity ratio, 4) the thickness ratio, and 5) the angular frequency
of the imposed surface temperature.

Fig. 2 Numerical domain and the grid sizes for the base case.

Table 3 Values of the thermal and geometrical properties for the
baseline case in the numerical simulation

Layer, j
Density
ρ, kg∕m3

Thermal
conductivity k,

W∕m∕K

Thermal
capacity cp,
J∕kg∕K

Thickness
x, m

1 100 400 1000 0.1
2 100 100 1000 0.1

T0 % 300 K, ΔTR % 200 K
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A code is developed using commercial softwareMaple 15 to solve
the transcendental relationship, Eq. (10). Our study shows that using
the first 50 terms in the series solution, Eq. (10), is accurate enough
to obtain the temperature distribution inside the media up to four
decimal digits. Note that the estimated number of series terms can
notably be reduced for large time scales since, for large values of n,
λn → ∞, and the exponential term in Eq. (13) drops remarkably.

A. Effect of Heat Generation
Figure 3 shows the variations of the centerline temperature against

the Fo number for different types of heat generation inside the layers.
Three different cases are considered separately to show the effect of
heat generation and verify the presented analytical solution. Defi-
nitions of cases 1 and 2 are indicated in Table 4, while for case 3, the
heat generation inside the layers is equal to zero. Lines in Fig. 3
represent the analytical solutions, and the symbols are used to indicate
the numerical simulation results. According to Table 3, the following
values are assumed arbitrarily for other dimensionless variables:
K1 % k2∕k1 % 4, μ2 % α2∕α1 % 4, ω % 2π, and η2 % x2∕x1 % 2.
The same trend is observed for any other combination of these
parameters, and thus they can be adopted as general results. The values
of thermophysical and geometrical parameters for the numerical
analysis are previously presented in Table 3. In addition, the di-
mensional and dimensionless values of heat generation considered in
this section for analytical and numerical studies are shown in Table 4.
As seen from Fig. 3, there is a good agreement between the numerical
data and the analytical results, a maximum relative difference of less
than 1.5%. The following conclusions can be drawn from Fig. 3:
1) At very initial times, as the heat generation inside the layers

increases, the thermal lag of the system decreases. Therefore, as Fo →
0 and g1 % g2 % 0, it takes some time for the centerline to respond to
the temperature excitation at the outer boundary. However, the trend is
a complete reverse for the case in which Fo → 0 and gj ≠ 0.
2) Regardless of the heat generation inside the layers, the tem-

perature inside the media fluctuates with the agitation angular
frequency of the outer boundary.

B. Effect of Angular Frequency

Figure 4 shows the temperature field inside concentric cylinders vs
theFo number for different values of the angular frequency, Eqs. (13)
and (15). Lines in Fig. 4 represent the analytical solutions, and the
symbols are used to indicate the numerical simulation results. The
following values are assumed arbitrarily for other dimensionless
variables: K1 % k2∕k1 % 4, μ2 % α2∕α1 % 4, and η2 % x2∕x1 % 2.
The values of thermophysical and geometrical parameters for the
numerical analysis are presented in Table 3. The dimensionless
angular frequency for the analytical study is considered as ω % 0, π,
2π, and 4π, which are corresponding to the dimensional angular
frequency ofΩ rad∕s % 0, 0.4π, 0.8π, and 1.6π, respectively, for the
numerical analysis. From Fig. 4, one can see that there is an excellent
agreement between the analytical results, Eqs. (13) and (15), and the
obtained numerical data. The maximum relative difference is less
than 2%. Also, the angular frequency of the imposed boundary
temperature has a significant effect on the thermal response of the
multilayered composite media. Further, the following conclusions
can be drawn:
1) As ω → 0, the imposed boundary temperature becomes

constant with time. Therefore, the present model yields the solution
of the step boundary temperature, i.e., Eq. (17).
2) As the angular frequency of the imposed temperature increases,

temperature fields do not follow the details of the imposed surface
temperature. As a result, the amplitudes of the temperature profiles
inside the media decrease.
3) The frequency of the temperature field inside the system is the

same as the frequency of the imposed surface temperature.
4) At early times, Fo < 0.05, the temperature inside the media is

not a function of the angular frequency. As such, all the curves for

Fig. 3 Variations of the dimensionless centerline temperature, Eq. (13),
against theFo number fordifferent types ofheat generation inside the layers.

Table 4 Dimensional and corresponding dimensionless
heat generations considered in the numerical

and analytical models, respectively

Case 1 Case 2

Heat
generation

Dimensionless
value gj

Numerical value
_qj,W∕m3

Dimensionless
value gj

Numerical
value,W∕m3

First layer,
j % 1

5η 400 × 106x 5 40 × 106x

Layer 2,
j % 2

5η 400 × 106x 5 40 × 106x

Ω % 0.8π rad∕s

Fig. 4 Effects of angular frequency on a) interfacial temperature, and
b) temperature field, vs the Fo number.
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different values of the angular frequency follow the same line, i.e., the
step surface temperature, ω → 0. This region is demarcated by the
dashed line in Fig. 4a.
5) The shift between the peaks of the temperature profiles is

marked at different radial positions. This shows a thermal lag due to
the thermal inertia of the system, which increases toward the
centerline of the concentric cylinder Δφ.
Figure 5 shows the dimensionless interfacial heat flux vs the Fo

number for different values of the angular frequency, Eq. (16). One
can conclude the following from Fig. 5:
1) At the limit where ω → 0, i.e., the step surface temperature, the

dimensionless interfacial heat flux reaches a maximum and then
decreases remarkably to reach a plateau at zero asFo → ∞. It should
be noted that when the step surface temperature is imposed on the
outer boundary the entire media reach the imposed temperature as
Fo → ∞. Therefore, the interfacial heat flux becomes zero for large
Fo numbers.
2)Whenω ≠ 0, the interfacial heat flux acts periodically over time

with the frequency of the imposed surface temperature.
3) As the angular frequency increases to a certain value, the

amplitude of the interfacial heat flux increases notably. This is called
the optimum angular frequency, whichmaximizes the interfacial heat
flux. This is discussed in more detail in Sec. V.F.
4) As previously mentioned, at early times, Fo < 0.05, all the

curves for different angular frequencies branch off from the same
line, i.e., the step surface temperature where ω → 0. This region is
demarcated by the dashed line in Fig. 5.

C. Effect of Thermal Conductivity Ratio, K1 # k1∕k2
Figures 6a and 6b show the variations of the interfacial and

centerline temperature vs the Fo number for different values of the
thermal conductivity ratio. The solid red line shows the imposed
surface temperature at the boundary. The following values are assumed
arbitrarily for other dimensionless variables: μ2 % α2∕α1 % 4, η2 %
x2∕x1 % 1.2, andω % π. FromFig. 6, the following canbe concluded:
1) As the thermal conductivity ratio increases, the thermal lag of

the system decreases significantly.
2) The more the thermal conductivity ratio, the higher the

amplitude of the temperature inside the medium.
3) As the thermal conductivity ratio increases, the interfacial

temperature approaches the imposed surface temperature, i.e., the red
line in Figs. 6a and 6b.
4) There is a considerable thermal lag between the interfacial and

centerline temperatures due to the thermal inertia of the inner cylinder.
5) The change in the temperature distribution inside the medium is

not significant for K1 > 4. This can be called the critical thermal
conductivity ratio beyond which for any combination of the other
parameters the calculated values of the temperature are not affected
by more than 1.4%, Kcr % 4.

Variations of the dimensionless interfacial heat flux, Eq. (16), vs the
Fo number for different values of the thermal conductivity ratio are
plotted in Fig. 7. From Fig. 7, the following conclusions can be drawn:
1) The amplitude of the interfacial heat flux increases with the

thermal conductivity ratio.
2) Increasing the thermal conductivity ratio beyond its critical

value, Kcr % 4, does not affect the interfacial heat flux significantly.
The maximum relative difference between the interfacial heat fluxes
for K % 4 and K % 100 is less than 1.4%.
3) As the thermal conductivity ratio decreases, the amount of heat

conducted from the outer layer to the inner one drops significantly.
Therefore, the outer surface acts as a thermal insulator, and the
interfacial heat flux drops down considerably.
4) Therefore, for K1 ≥ 1, the interfacial heat flux approaches the

imposed heat flux at the outer boundary due to the high thermal
conductivity of the outer cylinder. However, the amplitude of the
interfacial heat flux for K1 % 0.4 is dramatically less than that
of K1 ≥ 1.

D. Effect of Thermal Diffusivity Ratio, μ2 # α2∕α1

Figures 8a–8c show the interfacial temperature; centerline
temperature, Eq. (13); and interfacial heat flux, Eq. (16), respectively,
vs the Fo number for different values of the thermal diffusivity ratio.
The following values are assumed arbitrarily for other dimensionless
variables: K1 % k2∕k1 % 4, η2 % x2∕x1 % 2, and ω % π. From
Fig. 8, one can conclude the following:

Fig. 5 Variations of the dimensionless interfacial heat flux versus theFo
number (dimensionless time).

Fig. 6 Effects of thermal conductivity ratio on a) interfacial and
b) centerline temperatures vs the Fo number.
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1) As the thermal diffusivity ratio increases, the thermal lag of the
system decreases significantly.
2) Increasing the thermal diffusivity ratio augments the amplitude

of the temperature inside the media.
3) The critical value for the thermal diffusivity ratio is μcr % 40.

Beyond this value, for any combination of the other parameters, the
temperature field inside the medium is not affected considerably.
For instance, for μ % 40 and μ % 100, the maximum relative
difference for the interface temperature is less than 0.9%.
4) As the thermal diffusivity ratio drops, the amount of heat

diffused from the outer layer to the inner one decreases. Therefore,
the outer surface acts as a thermal insulator, and the amplitude of the
interfacial heat flux goes down considerably.

E. Effect of Thickness Ratio, η2 # x2∕x1
Figures 9a–9c show the interfacial temperature; centerline tem-

perature, Eq. (13); and interfacial heat flux, Eq. (16), respectively,
vs the Fo number for different values of the thickness ratio. The
following values are assumed arbitrarily for other dimensionless
variables: K1 % k2∕k1 % 4, μ2 % α2∕α1 % 4, and ω % π. One can
conclude the following from Fig. 9:
1) As the thickness ratio increases, the thermal lag of the system

increases notably.
2) The thermal inertiaof theouter surface increaseswith the thickness

ratio. Therefore, as the thickness ratio increases, the amplitude of the
interfacial temperature/heat flux decreases remarkably.
3) The interfacial temperature approaches the imposed surface

temperature as the thickness ratio decreases.
4) Regardless of the thickness ratio, the temperature inside the

multilayered region oscillates with the same frequency of the im-
posed surface temperature.

F. Angular Frequency to Maximize Interfacial Heat Flux

As pointed out earlier in Sec. V.D, for given values of the
dimensionless parameters K1, μ2, and η2, there is an optimum value
for the angular frequency at which the amplitude of the interfacial
heat flux is maximum. Figure 10 shows the variations of the max-
imum amplitude of interfacial heat flux, q"max;η%η1 , vs the angular
frequency for different values of the thickness ratio, η2. Here, the
values of the thermal conductivity and diffusivity ratios are chosen
arbitrarily equal to 4. It should be noted that q"max;η%η1 shows the
maximum amplitude of interfacial heat flux over the entire time (see
Fig. 4). The following conclusions can be drawn from Fig. 10:
1) As the angular frequency increases, the maximum amplitude

of interfacial heat flux, q"max;η%η1 , at first decreases slightly.
However, after a certain point, it starts increasing to form a hump
at the optimum angular frequency range. Beyond the optimum
point, the interfacial heat flux decreases until it asymptotically ap-
proaches zero.

2) For given values of thermal conductivity, thermal diffusivity,
and the thickness ratio, there is an optimum angular frequency that
maximizes the amplitude of the interfacial heat flux, i.e.,q"η%η1 . These
points are marked on Fig. 10.
3) To find the optimum angular frequency, for a given set of

properties, one should use Eq. (A22). Accordingly, variations of the
interfacial heat flux vs angular frequency are obtained for different
geometrical and thermophysical properties, which in turn reveal the
optimum angular frequency that maximizes the amplitude of the
interfacial heat flux.

Fig. 7 Interfacial heat flux vs the Fo number for different values of the
thermal conductivity ratio, Eq. (16).

Fig. 8 Effects of thermal diffusivity ratio on a) interfacial and
b) centerline temperatures, and c) interfacial heat flux.
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4) For some specific cases, e.g.,K1 % 4 and μ2 % 4, the following
relationship can be obtained between the maximum interfacial heat
flux and the angular frequency.
5) As an example, for K1 % 4 and μ2 % 4, based on curve fitting

the maximum interfacial heat flux can be correlated to the angular
frequency by the following relationship:

q"η1 ;max#ω$ % 0.07ω! 0.95 (20)

VI. Conclusions
A new analytical model is presented for the solution of one-

dimensional heat diffusion inside a multilayered composite medium
with an arbitrary number of layers under periodic outer-surface tem-
perature. The solution is presented in a generic coordinate to account
for heat conduction inside composite slabs, concentric cylinders, or
spheres. A nonstandard method of the separation of variables is
applied, which treats the entire multilayered region as one domain
with certain discontinuities at the interfaces between layers. Closed-
form relationships are proposed to predict 1) temperature distribution
inside the media, 2) the average temperature of each layer, and 3)
the interfacial heat flux. The present analytical results are verified
successfully with the obtained independent numerical data. The
maximum relative difference between the analytical results and the
numerical data is less than 2%. As an example, the methodology is
applied to investigate the thermal characteristics of two concentric
cylinders under the periodic outer-surface temperature. The highlights
of the present study can be listed as the following:
1) The main dimensionless parameters characterizing the thermal

behavior of a composite medium are 1) the thermal diffusivity ratio,
2) the thermal conductivity ratio, 3) the thickness ratio, and 4) the
dimensionless angular frequency.
2) Because of the thermal inertia of the system, there is a shift, or

thermal lag, between the temperatureprofiles at different radial positions;
this increases toward the centerline as the thermal inertia increases.
3) At two limiting cases, the thermal response of the system yields

that of the step surface temperature: 1)Fo → 0 (early time) and 2) no
thermal fluctuations, ω → 0.
4) As thermal conductivity or diffusivity ratios increase, the

thermal lag of the system decreases. As a result, the interfacial
temperature becomes closer to the imposed surface temperature.
5) There are critical values for the dimensionless thermal con-

ductivity and diffusivity ratios beyond which the temperature field
inside the medium is not affected considerably for any combination
of the other parameters.
6) For given values of thermal conductivity, thermal diffusivity, and

the thickness ratio, there is an optimum value for the angular frequency
at which the interfacial heat flux reaches its maximum value.

Appendix A:M-Layer Composite
The system of eigenvalue problems associated with Eq. (5) is

given as

μj
1

ηp
d

dη

"
ηp

dRjn
dη

#
% −λ2nRjn j % 1; 2; 3; : : : ;M (A1)

with the homogenous boundary conditions

Fig. 9 Effects of thickness ratio on a) interfacial temperature,
b) centerline temperature, and c) interfacial heat flux.

Fig. 10 Variations of the maximum interfacial heat flux vs the angular
frequency.
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∂R1

∂η
% 0 at η % 0 (A2a)

Rj#η%xj∕x1$%Rj!1#η%xj∕x1$ j%1;2;3; :::;#M−1$ (A2b)

∂Rj#η % xj∕x1$
∂η

% Kj
∂Rj!1#η % xj∕x1$

∂η
j % 1; 2; 3; : : : ; #M − 1$ (A2c)

RM % 0 at η % xM
x1

(A2d)

where Rjn is the eigenfunction in the jth layer associated with the
nth eigenvalue λn. The general solution of the previously mentioned
eigenvalue problem is in the form of

Rjn#η$ %
(
R1n#η$ % ϕ1n#η$ 0 ≤ η ≤ 1

Rjn#η$ % Cjnϕjn#η$ !Djnψ jn#η$
xj−1
x1

≤ η ≤
xj
x1

j % 2; 3; : : : ;M (A3)

where the functions ϕjn#η$ and ψ jn#η$ are two linearly independent
solutions of Eq. (A1). Table 2 lists the function ϕjn#η$ and ψ jn#η$ for
slabs, cylinders, and spheres.
It should be noted that J0 and Y0 are zeroth-order Bessel functions

of the first and second kinds, respectively. Furthermore, the ψ1n#η$
function is excluded from the solution, Eq. (A3), because of the
boundary condition at the origin; see Eq. (6a). The remaining
boundary conditions, Eqs. (6b–6f), yield

Av % 0 (A4)

where v % &1; C2n; D2n; C3n; D3n; : : : ; CMn;DMn'T and thematrixA
is defined by

A %

2
666666666666664

P1 0 0 0 0 0
Q1 0 0 0 0 0
0 P2 0 0 0 0
0 Q2 0 0 0 0

..

. ..
. ..

.
: : : ..

. ..
.

..

. ..
. ..

.
: : : ..

. ..
.

0 0 0 0 0 PM−1
0 0 0 0 0 QM−1
0 0 0 0 0 PM

3
777777777777775
#2M−1$×#2M−1$

(A5)

where

P1 % &ϕ1n −ϕ2n −ψ2n 'at η%1 (A6a)

Q1 % &ϕ 01n −K1ϕ 02n −K1ψ 02n 'at η%1 (A6b)

Pj % &ϕjn ψ jn −ϕ#j!1$n −ψ #j!1$n 'at η%xjx1 ;

j % 2; 3; : : : ; #M − 1$ (A6c)

Qj % &ϕ 0jn ψ 0jn −Kjϕ 0#j!1$n −Kjψ 0#j!1$n 'at η%xjx1 ;

j % 2; 3; : : : ; #M − 1$ (A6d)

PM % &ϕMn ψMn 'at η%xMx1 (A6e)

Equation (A4) yields 2M − 1 homogenous simultaneous equations
for vj, j % 1; 2; 3; : : : ;M. A nontrivial solution exists if the de-
terminant of the coefficients is zero:

det A % 0 (A7)

Equation (A7) can be solved for the eigenvalues λn. For each value
of λn that satisfies Eq. (A7), only 2M − 2 of the 2M − 1 equations in
Eq. (A4) are linearly independent so that 2M − 2 unknowns can be
obtained from these equations in terms of the remaining ones.
Following [16] and [28], as indicated by Eq. (A3), without loss of
generality, the value of the constants multiplied by ϕ1n and C1n are
taken as unity so that the coefficients C2n;D2n; : : : ; CMn;DMn can
be determined. Taking C1n as unity will not affect the solution
since all the components of the solution are normalized [16]. The
eigenfunctions Rjn#η$ do not form an orthogonal set due to the
discontinuity of the first derivative of Rjn#η$ at the interfaces, i.e.,
η % xj∕x1, j % 1; 2; : : : ; #M − 1$, Eq. (A3). Therefore, the Strum–
Liouville theorem of orthogonality cannot be applied. However, the
functions can be made orthogonal with respect to a discontinuous-
weighting function, which can be found by themethod introduced by
Yeh [15]. The method is not presented here; one can refer to [15] and
[18] for more details. To apply the method, we rewrite Eq. (A1) in the
following form:

d

dη

"
Fjηp

dRjn
dη

#
! λ2nηp

Fj
μj
Rjn % 0

xj−1
x1

≤ η ≤
xj
x1
;

j % 1; 2; 3; : : : ;M (A8)

Note thatFj is a constant within the interval xj−1∕x1 ≤ η ≤ xj∕x1,
yet unknown. Based on [15] and [18], the constants Fj should be
determined such that the functions Rjn become orthogonal with
respect to the discontinuous-weighting function w#η$. As such, the
orthogonality factors are given as

w#η$ % ηp

μj
Fj

xj−1
x1

≤ η ≤
xj
x1
; j % 1; 2; : : : ;M (A9)

Following Yeh [15], the following relationship is developed to
evaluate the constants Fj, to form the weighting functions:

F1 % 1; Fj %
Y

Kj−1 j % 2; 3; : : : ;M (A10)

Now that the constants Fj are determined, the weighting function
w#η$ is known. Therefore, any functionG#η$ can be expanded inside
the entire multilayered medium as follows:

G#η$ %
X∞

n%1
HnRn#η$ 0 ≤ η ≤

xM
x1

(A11)

The expansion is carried out over the range of 0 ≤ η ≤ xM∕x1,
spanning allM layers. The unknown coefficientsHn in Eq. (A11) are
determined by a generalized Fourier analysis over the entire range of
M layers and are given in the following form:
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Hn %
P

M
j%1

R
layerj G#η$w#η$Rjn#η$ dηP

M
j%1

R
layerj w#η$&Rjn#η$'2 dη

(A12)

Therefore, after using a separation-of-variables method, the tem-
perature distribution inside the entire media is considered in
the form

θj#η;Fo$%eiωFo!
X∞

n%1
Rjn#η$Γ#Fo$eiωFo j%1;2; :::;M (A13)

where i %
!!!!!!
−1
p

. The choice of using a complex exponential function
comes from the nature of the problem since we know that regardless
of the heat generation the temperature inside the media fluctuates
with the angular frequency of the boundary. Clearly, the final solution
is the real part of the sought-after solution. Substituting Eq. (A13)
into Eq. (5) and expanding the angular frequency over the entire
medium, after some algebraic manipulation, one obtains

X∞

n%1
Rjn&Γ0#Fo$!#iω!λ2n$Γ#Fo$! iEn−Gn×e−iωFo'%0 (A14)

Where, based on Eq. (A12), the coefficients En and Gn can be
determined by the following:

En % ω ×

P
M
j%1

R
layerj w#η$Rjn#η$ dηP

M
j%1

R
layerj w#η$&Rjn#η$'2 dη

(A15)

Gn %
P

M
j%1

R
layerj gj#η$w#η$Rjn#η$ dηP

M
j%1

R
layerj w#η$&Rjn#η$'2 dη

(A16)

Since in general Rjn is not zero, we must have

Γ 0#Fo$ ! #iω! λ2n$Γ#Fo$ ! iEn − Gn × e−iωFo % 0 (A17)

The solution of Eq. (A17) is given by

Γ#Fo$ % Ane−#λ
2
n!iω$Fo −

En#ω! iλ2n$
λ4n ! ω2

! Gn
λ2n

× e−iωFo (A18)

Substituting Eq. (A18) into Eq. (A13) and considering the real part
of the solution,

θj#η; Fo$ % cos#ωFo$

!
X∞

n%1
Rjn#η$

8
><
>:

Ane
−#λ2nFo$−

En
h
ω×cos#ωFo$−λ2n×sin#ωFo$

λ4n!ω2

i
! Gn

λ2n

9
>=
>;

j % 1; 2; : : : ;M (A19)

The coefficients An can be obtained by using the initial con-
dition, Eq. (6e), together with the orthogonality properties of the
eigenfunctions:

An % En
(

ω
ω2 ! λ4n

−
1

ω

)
−
Gn
λ2n

(A20)

As remarked earlier, the constants En can be determined
by Eq. (A15). The average temperature inside each layer is de-
fined as

!θj %
1

ηpj − ηpj−1

Zηj

ξ%ηj−1

ξpθj dξ j % 1; 2; : : : ;M (A21)

where ξ is a dummy variable. Moreover, the dimensionless heat flux
at interfaces can be obtained as follows:

q"j %
∂θj
∂η

''''
ηj%

xj
x1

%

X∞

n%1
R 0jn#ηj$

8
><
>:

Ane
−#λ2nFo$−

En
h
ω×cos#ωFo$−λ2n×sin#ωFo$

λ4n!ω2

i
! Gn

λ2n

9
>=
>;

j % 1; 2; : : : ;M − 1 (A22)

Appendix B: Consideration of Thermal Contact
Resistance Between Layers

Although throughout this study the effect of thermal contact re-
sistance (TCR) is neglected, in this section following [27], guidelines
are provided to show how the thermal contact resistance between the
layers can be treated. Therefore, only the equations that need to be
modified to include the effects of TCR are shown here, and other
equations remain the same. As such, Eq. (3b) should be altered to
indicate the discontinuity of temperature at the interfaces as a result of
TCR as

−kj
∂Tj
∂x
%hj× &Tj#xj;t$−Tj!1#xj;t$' j%1;2;3; :::;#M−1$

and t>0 (B1)

where hj W∕m2 K is the contact conductance between the jth and
j! 1th layers. In addition, the dimensionless form of Eq. (B1) should
be used instead of Eq. (6b),

∂θj
∂η
% Λj&θj!1#η % xj∕x1; Fo$ − θj#η % xj∕x1; Fo$'

j % 1; 2; 3; : : : ; #M − 1$; and Fo > 0 (B2)

where Λj % hjx1
kj

is the dimensionless contact conductance between
the jth and j! 1th layers.Accordingly, the continuityof eigenfunction
at the interface, Eq. (A2b), is modified as follows:

∂Rj
∂η
% Λj&Rj!1#η % xj∕x1$ − Rj#η % xj∕x1$'

j % 1; 2; 3; : : : ; #M − 1$ (B3)

The matrices P1 and Pj are obtained by the following
relationships:

P1 %
(
ϕ 01n
Λ1

− ϕ2n − ψ2n

)

at η%1
(B4)

Pj %
(
ϕ 0jn
Λj

ψ 0jn
Λj

− ϕ#j!1$n − ψ #j!1$n

)

at η%xjx1

;

j % 2; 3; : : : ; #M − 1$ (B5)
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It should be noted that matrices Q1, Qj, and PM do not change
since they are not related to the thermal contact resistance between the
layers. In this regard, the effect of contact resistance is reflected in the
coefficients Cjn and Djn, while, following the same procedure
outlined in Appendix A, the temperature distribution inside the
composite can be obtained. As such, if we apply the modified model
to account for the TCR in a two-layer concentric cylinder, the
temperature distribution inside the layer is obtained by Eq. (13), in
which the modified transcendental equation is as

−
Y0#λnη2∕

!!!!!
μ2
p $

J0#λnη2∕
!!!!!
μ2
p $ %

&J0#λn$ × Y1#λn∕
!!!!!
μ2
p $' − # !!!!!

μ2
p ∕K1$ × &Y0#λn∕

!!!!!
μ2
p $ × J1#λn$' − #λnΛ1

$ × &J1#λn$Y1#λn∕
!!!!!
μ2
p $'

# !!!!!
μ2
p ∕K1$ × &J0#λn∕

!!!!!
μ2
p $ × J1#λn$' − &J0#λn$ × J1#λn∕

!!!!!
μ2
p $' ! #λnΛ1

$&J1#λn$J1#λn∕
!!!!!
μ2
p $'

(B6)

The values of C2n and D2n are obtained by the following relationships:

C2n %
&J0#λn$ × Y1#λn∕

!!!!!
μ2
p $' − # !!!!!

μ2
p ∕K1$ × &Y0#λn∕

!!!!!
μ2
p $ × J1#λn$' − #λnΛ1

$ × &J1#λn$Y1#λn∕
!!!!!
μ2
p $'

&J0#λn∕
!!!!!
μ2
p $ × Y1#λn∕

!!!!!
μ2
p $' − &Y0#λn∕

!!!!!
μ2
p $ × J1#λn∕

!!!!!
μ2
p $' (B7)

D2n %
# !!!!!

μ2
p ∕K1$ × &J0#λn∕

!!!!!
μ2
p $ × J1#λn$' − &J0#λn$ × J1#λn∕

!!!!!
μ2
p $' ! #λnΛ1

$&J1#λn$J1#λn∕
!!!!!
μ2
p $'

&J0#λn∕
!!!!!
μ2
p $ × Y1#λn∕

!!!!!
μ2
p $' − &Y0#λn∕

!!!!!
μ2
p $ × J1#λn∕

!!!!!
μ2
p $' (B8)

The coefficients C2n and D2n show up in the eigenfunctions,
Eq. (7), while other parameters can be obtained by the same
procedure outlined earlier. It is evident that when Λ1 → ∞ the TCR
becomes negligible, and themodifiedmodel in Appendix B becomes
similar to that of Appendix A.

Acknowledgments
This work was supported by Automotive Partnership Canada,

grant numberAPCPJ 401826-10. The authorswould like to thank the
support of the industry partner, Future Vehicle Technologies, Inc.
(British Columbia, Canada).

References
[1] O’Keefe, M., and Bennion, K., “A Comparison of Hybrid Electric

Vehicle Power Electronics Cooling Options,” Vehicle Power and
Propulsion Conference, Inst. of Electrical and Electronics Engineers,
Arlington, TX, Sept. 2007, pp. 116–123.
doi:10.1109/VPPC.2007.4544110.

[2] Bennion, K., and Thornton,M., “IntegratedVehicle ThermalManagement
for Advanced Vehicle Propulsion Technologies,” Society of Automotive
Engineers (SAE) 2010 World Congress, NREL Paper CP-540-47416,
Denver, CO, Feb. 2010.

[3] Bennion, K., and Kelly, K., “Rapid Modeling of Power Electronics
Thermal Management Technologies,” 5th Institute of Electrical and
Electronics Engineers Vehicle Power and Propulsion Conference,
NREL Paper CP-540-46172, Denver, CO, Aug. 2009.

[4] Bennion, K., and Thornton,M., “IntegratedVehicle ThermalManagement
for Advanced Vehicle Propulsion Technologies,” SAE 2010 World
Congress, NREL Paper CP-540-47416, Denver, CO, Feb. 2010.

[5] Panão, M. R. O., Correia, A. M., and Moreira, A. L. N., “High-Power
Electronics Thermal Management with Intermittent Multijet Sprays,”
Applied Thermal Engineering, Vol. 37, May 2012, pp. 293–301.

[6] McGlen, R. J., Jachuck, R., and Lin, S., “Integrated Thermal
Management Techniques for High Power Electronic Devices,” Applied
Thermal Engineering, Vol. 24, Nos. 8, 9, June 2004, pp. 1143–1156.

[7] Ghalambor, S., Agonafer, D., and Haji-Sheikh, A., “Analytical Thermal
Solution to a Nonuniformly Powered Stack Package With Contact

Resistance,” Journal of Heat Transfer, Vol. 135, No. 11, Sept. 2013,
p. 1–9.

[8] Wang, C. Y., “Heat Conduction Across a Sandwitched Plate with
Stringers,” Journal of Thermophysics and Heat Transfer, Vol. 8, No. 3,
1994, pp. 622–624.

[9] Han, L. S., “Periodic Heat Conduction Through Composite Panels,”
Journal of Thermophysics and Heat Transfer, Vol. 1, No. 2, 1986,
pp. 184–186.

[10] Cheng, W.-L., Li, H., Liu, N., Huang, J.-R., Han, H.-Y., and Pang, S.,
“Thermal Performance Analysis of Space Debris Protection Enhanced

Multilayer Perforated Insulation,” Journal of Thermophysics and Heat
Transfer, Vol. 24, No. 4, Oct. 2010, pp. 833–838.

[11] Padovan, J., “Generalized Strum-Liouville Procedure for Composite
Domain Anisotropic Transient Conduction Problems,” Journal of
Thermophysics andHeat Transfer, Vol. 12,No. 1, 1974, pp. 1158–1160.

[12] Carslaw, H. S., and Jaeger, J. C., Conduction of Heat in Solids, Oxford
Univ. Press, Oxford, England, U.K., 1959, p. 199.

[13] Mayer, E., “Heat Flow in Composite Slabs,” ARS Journal, Vol. 22,
No. 3, 1952, pp. 150–158.

[14] Tittle, C. W., “Boundary Value Problems in Composite Media: Quasi-
Orthogonal Functions,” Applied Physics, Vol. 36, 1965, pp. 1487–1488.

[15] Yeh, H. C., “Solving Boundary Value Problems in Composite Media
by Separation of Variables and Transient Temperature of a Reactor
Vessel,” Nuclear Engineering and Design, Vol. 36, No. 2, 1976,
pp. 139–157.

[16] Olek, S., Elias, E., Wacholder, E., and Kaizerman, S., “Unsteady
Conjugated Heat Transfer in Laminar Pipe Flow,” International Journal
of Heat and Mass Transfer, Vol. 34, No. 6, 1991, pp. 1443–1450.

[17] Olek, S., “Heat Transfer in Duct Flow of Non-Newtonian Fluid with
Axial Conduction,” International Communications in Heat and Mass
Transfer, Vol. 25, No. 7, 1998, pp. 929–938.

[18] Olek, S., “Multiregion Conjugate Heat Transfer,” Hybrid Methods in
Engineering, Vol. 1, No. 2, 1999, pp. 119–137.

[19] Olek, S., and Elias, E., “2-D Conjugate Heat Transfer in Fluids with an
Arbitrary Fully-Developed Velocity Distribution,” Institution of
Chemical Engineers Symposium Series, Vol. 135, No. 4, 1994.

[20] Feng, Z. G., and Michaelides, E. E., “The Use of Modified Green’s
Functions in Unsteady Heat Transfer,” International Journal of Heat
and Mass Transfer, Vol. 40, No. 12, 1997, pp. 2997–3002.

[21] Yener, Y., and Ozisik, M. N., “On the Solution of Unsteady Heat
Conduction in Multi-Region Finite Media with Time-Dependent Heat
Transfer Coefficient,” Proceedings of 5th International Heat Transfer
Conference, (A75-14226 03-34), Society of Heat Transfer of Japan,
Tokyo, 1974, pp. 188–192.

[22] De Monte, F., “Transient Heat Conduction in One-Dimensional
Composite Slab. A ‘natural’ Analytic Approach,” International
Journal of Heat and Mass Transfer, Vol. 43, No. 19, Oct. 2000,
pp. 3607–3619.

[23] Lu, X., Tervola, P., and Viljanen, M., “Transient Analytical Solution to
Heat Conduction in Composite Circular Cylinder,” International
Journal of Heat and Mass Transfer, Vol. 49, Nos. 1, 2, Jan. 2006,
pp. 341–348.

698 FAKOOR-PAKDAMAN ETAL.

D
ow

nl
oa

de
d 

by
 S

IM
O

N
 F

RA
SE

R 
U

N
IV

ER
SI

TY
 o

n 
O

ct
ob

er
 2

9,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

T4
32

8 

http://dx.doi.org/10.1109/VPPC.2007.4544110
http://dx.doi.org/10.1109/VPPC.2007.4544110
http://dx.doi.org/10.1109/VPPC.2007.4544110
http://dx.doi.org/10.1109/VPPC.2007.4544110


[24] Lu, X., and Tervola, P., “Transient Heat Conduction in the Composite
Slab-Analytical Method,” Journal of Physics A: General Physics,
Vol. 38, No. 1, 2005, pp. 81–96.

[25] Jain, P. K., and Singh, S., “Analytical Solution to Transient Asymmetric
Heat Conduction in a Multilayer Annulus,” Journal of Heat Transfer,
Vol. 131, No. 1, 2009, Paper 011304.

[26] Kreyszig, E., Kreyzig, H., and Norminton, E. J., Advanced Engineering
Mathematics, John Wiley and Sons, New York, 2012, pp. 473–492.

[27] Ozisik, M. N., Boundary Value Problems of Heat Conduction,
International Textbook, London, 1968, pp. 262–294.

[28] De Monte, F., “An Analytic Approach to the Unsteady Heat Con-
duction Processes in One-Dimensional Composite Media,” Inter-
national Journal of Heat andMass Transfer, Vol. 45, No. 6, Mar. 2002,
pp. 1333–1343.

FAKOOR-PAKDAMAN ETAL. 699

D
ow

nl
oa

de
d 

by
 S

IM
O

N
 F

RA
SE

R 
U

N
IV

ER
SI

TY
 o

n 
O

ct
ob

er
 2

9,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

T4
32

8 


