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Graphite-based anisotropic materials are becoming the key component of next-generation cooling systems in

electronics and telecommunication industries. Proper use of these materials in the form of thermal spreaders,

compared to conventional metallic ones, can significantly reduce the thermal stress and thermal resistance in the

system. In this study, a new analytical model for temperature distribution inside anisotropic rectangular plates

subjected to multiple sources and sinks on the top and bottom surfaces is presented. All lateral faces are assumed

insulated. The solution is first justified for the case with single hotspots on each side and then using the superposition

principle, it is extended into the general form to cover multihotspot cases. The model is validated by numerical

simulation data and a perfect agreement is observed. Thermal spreading resistance is defined for the anisotropic plate

and a comprehensive parametric study for optimization purpose is performed. The influence of both anisotropy and

geometrical parameters on the resistance is discussed in detail and critical values are evaluated.

Nomenclature

A, B, C = solution coefficients
a = length of source/sink, m
b = width of source/sink, m
H = plate thickness, m
k = thermal conductivity,W∕m · K
L = plate length, m
M = number of sources/sinks on top surface
m, n = term number in series solution
N = number of sources/sinks on bottom surface
Q = total heat flow, W
q = heat flux, W∕m2

Qref = reference heat flow, W
s = Fourier series coefficient
T = temperature, K
T0 = reference temperature, K
W = plate width, m
X = x coordinate of source/sink center, m
Y = y coordinate of source/sink center, m
β = eigenvalue, z direction
δ = eigenvalue, y direction
ε = width to length aspect ratio of plate
εH = height to length aspect ratio of plate
κ = dimensionless thermal conductivity
λ = eigenvalue, x direction

Subscripts

i = number of sources/sinks on each surface
source = pertaining to heat sources
sink = pertaining to heat sinks

Superscripts

b = bottom surface

t = top surface
* = specifies dimensionless parameter
‘ = pertaining to bottom surface

I. Introduction

R ECENTLY, graphite-based anisotropic materials have received
significant attention due to their exceptional thermophysical

properties [1–3]. Graphite-basedmaterials are one of thewell-known
anisotropic materials that have in-plane thermal conductivities, up to
1500 W∕m · K, and through-plane thermal conductivities around
2 W∕m · K [3–6]. This property is mainly due to their special atomic
structure. Generally, they are a stack of graphene flakes piled upon
each other (Fig. 1). The interlayer cohesive energy of graphene
flakes, which is due to the van der Waals atomic attraction, is much
stronger than intralayer covalent bonding [7]. This structural feature
causes large anisotropy in graphite, whichmakes it an ideal candidate
for heat spreaders where higher heat transfer is desired in in-plane
than in the through-plane direction. Heat spreaders are one of the
main components in any cooling systems of electronic, power
electronic, photonics, and telecom devices. They reduce heat flux at
hotspots by spreading it into a larger area [8,9]. The spreading (or
constriction) resistance causes an extra resistance against the heat
flow, which can be minimized by properly designing the spreader.
A number of relevant analytical and numerical studies can be

found on this topic in the literature. Most of the existing works were
focused only on isotropic materials. Kokkas [10] obtained a general
quasi-equilibrium Fourier–Laplace transform solution for a
rectangular slab with heat sources on top and convective cooling
on the bottom. Kadambi and Abuaf [11] developed an analytical
solution to axisymmetric as well as three-dimensional (3-D) steady-
state and transient heat conduction equations for a convectively
cooled slab with a heat source at the center of the top surface. A
numerical techniquewas presented byAlbers [12] to solve for surface
temperature of a stack of rectangular layers for both isotropic and
anisotropic materials. Yovanovich et al. [8] reported a general
expression for spreading resistance of a heat source centered on a
rectangular double layer plate with either conduction or convection
on the bottom surface. They also presented closed-form spreading
resistance relationships for several special cases. Culham et al. [13]
reported a more general solution to the 3-D Laplace equation for the
rectangular plate with a centered heat source on the top and edge
cooling instead of insulation on the sidewalls. Later, Muzychka et al.
[14] extended thework of Culham et al. and solved the same problem
in cylindrical coordinates for a circular slab. In another study,
Muzychka et al. [15] reported a general solution for thermal
spreading resistances of a convectively cooled rectangular flux
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channel with eccentric heat sources on top. Using a superposition
technique, Muzychka [16] generalized the solution for problems
with multiheat sources on the top. He introduced the “influence
coefficient,” which defines the contribution of each heat source on
the temperature rise of other hotspots. Employing an asymptotic
approach, Karmalkar et al. [9] proposed a closed-form expression for
the spreading resistance for all rectangular and circular hotspot
contact conditions. Rahmani and Shokouhmand [17,18] also
investigated the effect of the temperature dependency of thermal
conductivity on spreading resistance in semiconductors and, using
the Kirchhoff transformation technique, they introduced spreading
resistance models for different materials. Recently, Dan et al. [19]
presented a solution to temperature distribution inside a multilayered
isotropic rectangular tube with discrete isothermal hotspots on both
top and bottom surfaces. To overcome the complexity of the mixed
boundary conditions, they employed an approximate technique to
convert this boundary condition into aNeumann boundary condition.
There are only a few analytic studies in the literature on 3-D

conduction heat transfer in anisotropicmaterials subjected to discrete
heat flux. Ying and Toh [20] developed an anisotropic spreading
resistance model in cylindrical coordinates for a disc with a centric
heat source on the top and convective cooling on the bottom.
Muzychka et al. [21] brought a summary of all the previous studies
for isotropic materials and, by transforming the boundary conditions
and governing equations for anisotropic systems, obtained a new
solution for convectively cooled rectangular flux channels as well as
circular flux tubes with centralized heat source on the top. Muzychka
recently proposed a thermal spreading resistance model for
compound orthotropic systems with interfacial resistance subjected
to a centric source on the top and convective cooling on the bottom for
both rectangular and circular geometries [22,23].
In the present study, a new general solution to 3-D conduction heat

transfer in an anisotropic rectangular plate (kx ≠ ky ≠ kz) with
multiple heat sources and heat sinks on the top and bottom surfaces is
presented. The present model is validated by an independent
numerical study. It is found that in electronic devices where heat is
required to travel in-plane from the hotspot to get to the sink, which is
the case of notebooks and cell phones, properly designed anisotropic

spreaders perform much better than conventional isotropic
metallic ones.

II. Model Development

An anisotropic rectangular plate of L ×W with thickness of H
(Fig. 2a) is considered for the following two scenarios:
1) Subjected to a single rectangular heat source and heat sink

arbitrarily located on both the top and bottom surfaces. Heat source
and sink refer to any type of heat inflow and outflow, respectively,
whose profile of heat flux is known.
2) More generally, subjected toM and N, arbitrarily located sinks

and sources on the top and bottom surface.
As boundary conditions, it is assumed that the lateral faces of the

plate are insulated, i.e., there is no heat transfer through the sidewalls.
All the top and bottom surfaces, except at the spots (refers to either
source or sink), are also considered to be insulated. Spots have
arbitrary heat flux, qi�x;y� (i is the number assigned to spots), positive
values for heat sources, and negative values for sinks, which are
functions of x and y. Each spot is centrally positioned at the x
coordinate of X and y coordinate of Y, with a length and width of a
and b, respectively, as shown in Fig. 2b. The objectives are to: 1) find
the temperature distribution inside the plate with any arbitrary
arrangement of spots on the top and bottom surfaces analytically and
2) define corresponding spreading resistance.

A. General Solution

Dimensionless parameters are defined as follows and the
governing equation and boundary conditions are expressed
accordingly

ε�W
L
; εH �

H

L
; x� � x

L
; y� � y

W
; z� � z

H

a�i �
ai
L
; b�i �

bi
W
; q�i�x;y� �

LWqi�x;y�
Q0

; θ� Lk0
Q0

�T −T0�

κx �
�����
k0
kx

s
; κy �

�����
k0
ky

s
; κz �

�����
k0
kz

s
; R� � LkzR (1)

where Q0 and k0 are arbitrary reference heat flux and thermal
conductivity, respectively, and T0 is a reference temperature. Using
the parameters in Eq. (1), the dimensionless form of the governing
equation and the boundary conditions are

∇2θ � 1

κ2x

∂2θ
∂x�2
� 1

ε2κ2y

∂2θ
∂y�2
� 1

ε2Hκ
2
z

∂2θ
∂z�2
� 0 (2)

∂θ
∂x�
� 0 at x� � 0; x� � 1

∂θ
∂y�
� 0 at y� � 0; y� � 1 (3)

Fig. 1 SEM image of compressed expanded graphite.

Fig. 2 Schematic of anisotropic rectangular spreader with multiple hotspots on a) top and bottom surfaces size and b) location of hotspots.
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at z� � 0 →

8>><
>>:

∂θ
∂z�
� κ2zεH

ε
q�i�x;y� at spot i domain

∂θ
∂z�
� 0 at remainder

at z� � 1 →

8>><
>>:

∂θ
∂z�
� κ2zεH

ε
q 0�i�x;y� at spoti domain

∂θ
∂z�
� 0 at remainder

(4)

Using a separation of variable technique, Eq. (2) has the general
solution in the form given next

θ �
X
λ

X
δ

C�λ;δ�e
λκxx

�
eδεκyy

�
ei

����������
λ2�δ2
p

εHκzz
�

(5)

in which λ, δ, and C�λ;δ� are unknown coefficients that should be
defined by applying the boundary conditions. Applying the first
boundary conditions, Eq. (3), and expanding the solution into
trigonometric form results in

θ � A0z
�

�
X∞
m�1

cos�λκxx�� × �Am cosh�λεHκzz�� � Bm sinh�λεHκzz���

�
X∞
n�1

cos�δεκyy�� × �An cosh�δεHκzz�� � Bn sinh�δεHκzz���

�
X∞
n�1

X∞
m�1

cos�λκxx�� cos�δεκyy��

× �Amn cosh�βεHκzz�� � Bmn sinh�βεHκzz��� (6)

where λ, δ, and β are eigenvalues in the form given next

λ � mπ
κx
; δ � nπ

κyε
; β �

����������������
λ2 � δ2

p
(7)

In Eq. (6),A andB are coefficients that should be defined by applying
the boundary conditions on the top and bottom surfaces. As shown in
Eq. (4), the Neumann boundary conditions on these two surfaces
have a discrete form that cannot directly be applied. To apply these
boundary conditions in the solution, Eq. (6), a two-dimensional (2-D)
Fourier expansion technique is used. Using this technique, the
temperature distribution is derived for single andmultihotspots cases.

1. Single Heat Source and Heat Sink

For a plate with one heat source on the top surface (superscript t)
and one heat sink on the bottom (superscript b), the coefficients of the
solution, Eq. (6), are as follows

A0 �
κ2zεH
ε
st00 �

κ2zεH
ε
sb00 (8)

Bm �
2κzs

t
m0

ελ
(9)

Bn �
2κzs

t
0n

εδ
(10)

Bmn �
4κzs

t
mn

εβ
(11)

Am �
2κz
ελ
�sbm0csch�λεH� − stm0 coth�λεH�� (12)

An �
2κz
εδ
�sb0ncsch�δεH� − st0n coth�δεH�� (13)

Amn �
4κz
εβ
�sbmncsch�βεH� − stmn coth�βεH�� (14)

in which the auxiliary coefficients, obtained from the Fourier
expansion, are

s
t∕b
00 �

ZZ
t∕b

q��x;y� dx
� dy� (15)

s
t∕b
m0 �

ZZ
t∕b

q��x;y� × cos�λκxx�� dx� dy� (16)

st∕b0n �
ZZ
t∕b

q��x;y� × cos�δεκyy�� dy� dx� (17)

s
t∕b
mn �

ZZ
t∕b

q��x;y� × cos�λκxx�� cos�δεκyy�� dx� dy� (18)

2. Multiple Sources/Sinks on Top and Bottom Surface

Because conduction heat transfer in a solid is a linear process, the
superposition principle is applicable. As such, for cases withmultiple
sources/sinks on each of the top and bottom surfaces, temperature
distribution can be readily obtained by superposing the single source
results. Using this approach, the solution can be generalized for
rectangular plates withM and N number of sources/sinks on the top
and bottom surfaces, respectively. As a result, the solution, Eq. (6),
and the coefficients, Eqs. (8–14), remain unchanged; however, the
auxiliary coefficients take the more general form, in which q�

changes to q�i referring tomultiple sources/sinks. In a particular case,
in which each spot has a constant heat flux,the auxiliary coefficients
take the following simplified form

st∕b00 �
XM orN

i�1
q�i a

�
i b
�
i (19)

s
t∕b
m0 �

1

λκx

XM orN

i�1
q�i b

�
i sin�λκxx��j

X�i �
a�
i
2

X�i −
a�
i
2

(20)

s
t∕b
0n �

1

δεκy

XM orN

i�1
q�i a

�
i sin�δεκyy��j

Y�i �
b�
i
2

Y�i −
b�
i
2

(21)

s
t∕b
mn �

1

λδεκxκy

XM orN

i�1
q�i sin�λκxx��j

X�i �
a�
i
2

X�i −
a�
i
2

× sin�δεκyy��j
Y�i �

b�
i
2

Y�i −
b�
i
2

(22)

B. Thermal Resistance

To define thermal resistance, two temperatures and the amount of
heat flow is required. In this study, the difference between average
temperatures over the heat sources and heat sinks is considered the
temperature difference required to define the thermal resistance. Total
heat flow also can be derived by integrating the heat flux over the heat
sources or heat sinks domain. As such, the spreading resistance can
be defined as [14–16,19]

R� � j
�θSources − �θSinksj

Q�
(23)
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where

�θSources �
1P

Sourcesa
�
i b
�
i

X
Sources

ZY�i �b�i2
Y�i −

b�
i
2

ZX�i �a�i2
X�i −

a�
i
2

θSources dx
� dy� (24)

�θSink �
1P

Sinksa
�
i b
�
i

X
Sinks

ZY�i �b�i2
Y�i −

b�
i
2

ZX�i �a�i2
X�i −

a�
i
2

θSink dx
� dy� (25)

Q� �

������
ZZ

Sources∕Sinks

q�i dx
� dy�

������ (26)

For the case of constant heat fluxes, Q� can simply be calculated by
summation of dimensionless heat fluxes multiplied by their
dimensionless domain area.

III. Results and Discussion

A. Model Validation

To validate the present model, an anisotropic rectangular pyrolytic
graphite sheet (PGS) with an arbitrary arrangement of four spots is
assumed, i.e., two sources on the top surface and two sinks on the
bottom, see Fig. 3. The chosen PGS has a through-plane and in-plane
thermal conductivity of 4 and 800 W∕m · K, respectively [4–6].
The numerical analysis is performed using COMSOL Multi-

physics 4.2a [24]. A sensitivity study on the grid size is performed for
two different levels of extra and extremely fine mesh sizes with
7.6 × 104 and 4.2 × 105 elements, respectively. Less than 0.1%
relative difference for local temperature between the two cases is
observed. The computation time for the extra fine mesh size using a
typical Pentium dual-core PC is around 20 s. Using the proposed
model, this time is less than 5 s for 100 terms in series and fine
mesh size.
To compare the results quantitatively, temperatures along three

different imaginary lines in three different directions, labeled in
Fig. 3, are plotted in Fig. 4 for both analytical and numerical results.
For this specific example, the characteristic lengthL andQ0 are equal
to 0.1m and 1 kW, respectively. The reference thermal conductivity is
assumed to be 4 W∕m · K. The thermophysical parameters are listed
in Table 1.
As shown in Fig. 4, there is an excellent agreement between the

analytical model results and the numerical simulation. A sensitivity
analysis on the number of eigenvalue terms in the series solution is
performed. Increasing the number of terms in the series from 100 to
400 will not change the solution considerably (less than 0.1%).

B. Parametric Study

A parametric study is performed to investigate the effects of:
1) anisotropy and 2) geometrical parameters such as plate thickness,
plate aspect ratio, spots relative size, and aspect ratio on thermal
performance of heat spreaders. This parametric study is performed

for spreaders with a single heat source and heat sink, each of them
placed on one face of the plate. The behavior of the multihotspot
geometries can be obtained by superposing the effects caused by each
single spot.
To cover a wide range of variation in each of the previously

mentioned geometrical parameters and determine the effect of
anisotropy, two different arrangements for source and sink are chosen
to represent two extreme cases, as shown in Fig. 5. In the first case, a
heat source on the top and a heat sink on the bottom are centrally
aligned and positioned at the center of the plate. This arrangement
(case I) represents the lowest thermal resistance due to the minimum
distance between the source and the sink. In case II, the heat source on
the top surface and the heat sink on the bottom surface are positioned
at two opposite corners; thus representing the highest thermal
resistance. Heat sources and heat sinks are assumed isoflux.

1. Effect of Anisotropy

To study the anisotropy of materials, resistance of a square plate
with two different arrangements of source and sink, case I and case II
(shown in Fig. 5) is plotted vs through-plane to in-plane conductivity
ratios for four different plate thicknesses in Figs. 6 and 7. The
conductivity ratio kxy∕kz ranges from 0.01 to 100. The source and
sink are identical squares with arbitrary side lengths of 0.2 L. The
plate is also set to be square (ε � W∕L � 1). The effect of the spots’
size will be investigated separately later. For better depiction, the
graphs are plotted in logarithmic scale.
Figure 6 shows that, in a plate with two centrally aligned spots on

the top and bottom (case I), as the ratio of the in-plane to through-
plane conductivity increases, the thermal resistance decreases. This
trend can be explained as follows: as the in-plane conductivity
increases, the temperature becomes uniform over the surface much
faster due to less in-plane resistance against the heat flow, so the heat
spreading/constriction takes place easier with less temperature drop.
For the arrangement of case I, heat transfer improvement due to

increasing the in-plane conductivity is directly related to the size of
the spots. As shown in Fig. 8, for smaller spot area, the resistance

Fig. 3 Cutline position inside rectangular plate for comparison between
analytical and numerical results.

Fig. 4 Comparison between present analytical model and numerical
results for temperature along three different cutlines using the hotspot
arrangement of Fig. 3.

Table 1 Thermophysical characteristics of plate and spots
in Fig. 3 used in numerical analysis

Plate
dimensions Plate material Source 1 Source 2 Sink 1 Sink 2

L � 10 cm k0 � 4 W∕mk Q0 � 1 kW

ε � 1 κx � 0.07 a� � 0.2 a� � 0.2 a� � 0.2 a� � 0.2
εH � 0.2 κy � 0.07 b� � 0.2 b� � 0.2 b� � 0.2 b� � 0.2

κz � 1 X� � 0.5 X� � 0.5 X� � 0.5 X� � 0.2
Y� � 0.5 Y� � 0.8 Y� � 0.5 Y� � 0.9
q� � 1 q� � 1 q� � 1 q� � 1
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decrease occurs more significantly when the in-plane thermal
conductivity increases. This is because the spreading/constriction
resistance becomes more considerable with smaller relative spot
sizes. Thus, in such spreaders, higher in-plane thermal conductivity
results in much better thermal performance improvement of the heat
spreader. In other words, for smaller spots, it is thermally more
efficient to use anisotropic material for the spreader. At the limit
where the spots’ sizes are as big as the plate surface, i.e., one-
dimensional (1-D) heat conduction, no spreading or constriction
exists; thus, changing the in-plane conductivity has no effect on the
plate resistance.
For the second arrangement (case II), anisotropy of thematerial has

amore pronounced effect on the thermal performance of the spreader.
Figure 7 shows, for all thicknesses, thermal resistance decreases as
the in-plane conductivity increases. For thinner plates, this variation

is more than for the thicker ones. It is because in thinner plates the
heat is passing through a smaller cross section which in comparison
to thicker plates results in higher thermal resistance. However, as the
in-plane thermal conductivity increases, the effect of in-plane
resistance becomes less important and the thickness becomes the
controlling parameter. This phenomenon is clearly shown in Fig. 7,
where two curves of different thicknesses intersect. These inter-
section points demarcate the critical conductivity ratios for the two
corresponding thicknesses before which the in-plane resistance is
dominant, thus the thinner plate has a larger resistance. However,
beyond these points, through-plane heat transfer plays a more
important role, and the thicker plate presents more resistance.
The important points can be summarized as follows:
1) Regardless of spot arrangement and plate thickness, increasing

the in-plane thermal conductivity always improves the heat transfer.
2) As the relative eccentricity of spots on the top and bottom

surface increases, the anisotropy effect becomes more prominent.
3) As the relative size of spots becomes smaller, increasing the in-

plane thermal conductivity has a more pronounced effect on the
thermal performance of the plate.
4) Changing anisotropy in thinner plates creates more resistance

variation compared to thicker ones.
5) In 1-D heat transfer, resistance is only a function of through-

plane conductivity and the platematerial’s anisotropy has no effect on
its resistance.

2. Geometrical Parametric Study

In this section, for convenience, all cases are assumed isotropic.

a. Effect of Plate Thickness.—Dimensionless resistance vs dimension-
less thickness for five arbitrary different sizes of spots is plotted for
both cases I and II in Figs. 9 and 10, respectively.Heat source and heat
sink in each case are assumed to be square and have the same size.
The plate is also set to be square.
As indicated in Figs. 9 and 10, two asymptotes can be recognized.

It is shown that in case I, in which the source and sink are vertically
aligned, as the thickness of the plate approaches zero, the resistance
with an increasing slope moves to zero. The slope at very small
thickness approaches the inverse of the spot area for each spot size. It
can be interpreted that for case I, at smaller thickness, the heat transfer
approaches a 1-D conduction, in which the resistance is proportional
to the thickness and the inverse of the area. In other words, if the plate
is thin enough, heat only passes through the column between the
source and sink, i.e., a 1-D heat conduction. However, this is not true
for case II, in which the source and sink are positioned at the corners.
In this case, as the thickness approaches zero, the resistance
approaches infinity due to the very narrow heat transfer path, as
shown in Fig. 10.
On the other extreme, when the plate thickness increases to large

values, similar behavior is observed for both cases I and II. It is seen

Fig. 5 Two different arrangements of hotspots for parametric study.

Fig. 6 Resistance vs in-plane to through-plane conductivity ratio for
four thicknesses (case I).

Fig. 7 Resistance vs in-plane to through-plane conductivity ratio for
four thicknesses (case II).

Fig. 8 Resistance vs in-plane to through-plane conductivity ratio for
four hotspot sizes (case I).
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that for thick plates, resistance varies almost linearly with thickness
and the rate of change approaches unity, whichmeans any increase in
the thickness is equivalent to adding the resistance of a 1-D heat
transfer in a blockwith the dimensions of plate area and that increased
thickness. This can be explained as follows: as the thickness increases
beyond a value, the resistance increase is not a function of spot size
and position anymore and it changes only with thickness.
Also, note that for the spreaders with eccentric spots, there always

is an optimum thickness that provides a minimum resistance and is a
function of plate geometry and spot arrangement. The following
summarizes the effects of plate thickness:
1) For large thicknesses, the resistance variation due to the

thickness change is not a function of spot arrangements.
2) Resistance for plates with nonaligned spots on the top and

bottom surfaces approaches infinity as the thickness approaches zero.
3) Resistance for the plate with aligned and equal spots on the top

and bottom surfaces becomes independent of plate size and spot
position as the thickness approaches zero.
4) For plates with nonaligned spots on the top and bottom surfaces,

there is an optimum thickness, which gives aminimum resistance. As
the size of the spots decreases, this optimum value increases.
5) Resistance for plates with aligned and equal spots on the top and

bottom surfaces has an asymptotic behavior in both very small and
very large thicknesses.

b. Effect of Plate Aspect Ratio.—The effect of the plate aspect ratio on
the resistance for both cases I and II for different thicknesses are
shown in Figs. 11 and 12, respectively. The area of the plateW × L is
kept constant, equal to unity. The source and sink dimensions remain
constant and equal in both cases, a � b � a 0 � b 0 � 0.2L.

In this specific case, because the goal is to investigate the effect of
variation of L, which has been used as the characteristic length,
nondimensionalizing the resistance with respect to Lwould not lead
to any useful results. Therefore, dimensional resistances are plotted.
Figure 11 shows the resistance of constant area plate vs its aspect

ratiowith identical spots in the center. It can be seen that regardless of
the thickness, increasing the aspect ratio deteriorates the thermal
performance. However, as the thickness of the plate decreases, the
effect of the aspect ratio variation becomes smaller. The reason is that
heat transfer occurs mainly through the plate bulk, which is in
between the sink and the source. Thus, changing the aspect ratio does
not noticeably affect the heat transfer.
Similar to case I, but more strongly, increasing the aspect ratio for

the spot arrangement of case II increases the resistance, as shown in
Fig. 12. This is reasonable because as the aspect ratio increases, two
spots get further away from each other so the heat flow coming from
the source has to pass through a longer distance to reach the sink.
The following are the important conclusions regarding the plate
aspect ratio:
1) For a fixed area of heat spreader, a square shape offers minimum

resistance.
2) Changing the plate aspect ratio causes smaller resistance change

in thicker plates rather than thinner ones.

c. Effect of Source/Sink Relative Size.—In applications where the spot
sizes are adjustable, they can be chosen such that thermal resistance is
minimized. For this purpose, the effect of the spot relative size on
the plate resistance is studied on case I for two different scenarios:
1) the square-shaped source and sink vary in size simultaneously and

Fig. 9 Plate resistance vs plate thickness for hotspot arrangement of
case I.

Fig. 10 Plate resistance vs plate thickness for hotspot arrangement of
case II.

Fig. 11 Plate resistance vs plate aspect ratio for different thickness
(case I).

Fig. 12 Plate resistance vs plate aspect ratio for different thickness

(case II).
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2) the sink size is kept constant at a 0 � b 0 � 0.2L, whereas the
source size is varied.
For the first scenario, the resistance vs side length of square source

and sink is plotted in Fig. 13 for different thicknesses. As can be seen,
the spot side length ranges from small values to unity, i.e., the plate
length.
Figure 13 shows that as the heat sink and heat source size increase,

the resistance against the heat flow decreases. At the point where the
dimensionless spot side length is equal to unity the area of spots are
equal to the area of the plate, the heat transfer is 1-D and the
dimensionless resistance is equal to the dimensionless thickness.
The second scenario is plotted in Fig. 14.When one of the spots has

a constant area, increasing the other spot’s size does not always cause
heat transfer improvement. It shows that the minimum resistance
occurs when the sink area is between the heat source and the spreader
plate area. This optimum point depends on the geometrical para-
meters of the plates and the source. One important parameter in
defining this optimum point is the thickness of the plate. As indicated
in Fig. 14, theminimum resistance happens at larger heat source areas
as the thickness increases. There is a critical thickness, beyondwhich
this optimum resistance occurs, where the source has the biggest
possible area, i.e., the plate surface area. For instance, when the
square heat source has a constant side length of 0.2L, this critical
thickness is almost 0.3L. Beyond this value, the minimum resistance
occurs when the sink area is equal to plate area.
The important points regarding the spots size (case I) can be

concluded as follows:
1) For the same heat source and heat sink size, a minimum thermal

resistance exists where there is maximum available area.
2) If one of the spots areas is fixed, there is an optimum size for the

other spot that offers a minimum resistance. This optimum size is
somewhere between the fixed spot size and the spreader plate size.

3) Beyond some thicknesses, theminimum resistance occurswhen
the spots have the maximum available area.

d. Effect of Source/Sink Aspect Ratio.—The spot aspect ratio also can
affect the resistance of the plate. Resistance vs heat sink aspect ratio,
while its area is kept constant, is plotted in Fig. 15 for case I for
different plate thickness. All other geometrical parameters, including
the sink’s dimensions, are kept constant. The aspect ratio changes
from 1, a square of 0.2L × 0.2L, to 25, which is a strip with the length
of the plate width. The plot in Fig. 15 shows that if one hotspot is
confined to a square shape, the minimum resistance occurs when the
other spot has a rectangular shape and its aspect ratio depends on the
plate thickness and square spot’s size and area. As can be seen in
Fig. 15, as the thickness of the plate increases, the optimum aspect
ratio of the source increases.
The following summarizes the trends observed in Fig. 15:
1) If one spot is confined to a constant square shape, the minimum

resistance occurs when the other spot has a rectangular shape and its
aspect ratio depends on the plate thickness and square spot size
and area.
2) As the plate thickness increases, the optimum aspect ratio for the

heat sink while the heat source is in square shape increases.
3) Comparing to other parameters spot’s aspect ratio has less

impact on thermal resistance.

IV. Conclusions

A new analytical model was developed for temperature
distribution inside anisotropic rectangular plates subjected to
multiple sources and sinks on the top and bottom surfaces. A 2-D
Fourier expansion technique was used to transform the discrete
Neumann boundary conditions on the top and bottom into a
continuous form. The solution was first developed for the case with
an arbitrary single spot on each side and then, using the superposition
principle, it was extended to the general form to cover multispot
cases. The model was validated by an independent numerical
simulation data and a perfect agreement was observed. Thermal
spreading resistance was then defined for the plate and a
comprehensive parametric study for optimization purpose was
performed. The effects of both thermal and geometrical parameters
on the resistance were discussed in detail.
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Fig. 13 Plate resistance vs hotspot size for case I (source and sink vary in
size equally).

Fig. 14 Plate resistance vs heat sink size for case I.

Fig. 15 Plate resistance vs heat sink aspect ratio for case I (source size
remains constant).
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