Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications

Amir Sharafian, Seyyed Mahdi Nemati Mehr, Poovanna Cheppudira Thimmaiah, Wendell Huttema, Majid Bahrami*

Laboratory for Alternative Energy Conversion (LAEC), School of Mechatronic Systems Engineering, Simon Fraser University, BC, V3T 0A3, Canada

\textbf{A R T I C L E I N F O}

\textbf{Article info}

Received 8 August 2015
Received in revised form 18 June 2016
Accepted 20 June 2016
Available online 5 August 2016

\textbf{Keywords:}

Adsorbent mass
FAM-Z02
Adsorber bed
Adsorption cooling system
Vehicle air conditioning

\textbf{A B S T R A C T}

Waste heat-driven adsorption cooling systems (ACS) are potential replacements for vapor compression refrigeration cycles in vehicle air conditioning applications. However, the bulkiness and heavy weight of ACS are major challenges facing commercialization of these environmentally friendly systems. This study examines the effects of adsorbent mass and the number of adsorber beds on the performance of a FAM-Z02/water ACS under different operating conditions. The experimental results show that reducing the mass of FAM-Z02 from 1.9 to 0.5 kg in a one-adsorber bed ACS increases the SCP by 82% from 65.8 to 119.4 W/kg at cycle time of 20 min. However, the COP reduces by 37% because of the increase in the adsorber bed to adsorbent mass ratio. The results also show that the thermal mass of the evaporator limits the performance of the ACS, especially under short cycle times (8–20 min). A second adsorber bed is added to the one-adsorber bed ACS test bed to generate continuous cooling in the evaporator. Comparing the performance of one- and two-adsorber bed ACS packed with 0.5 kg of FAM-Z02 particles and cycle time of 20 min shows that the SCP and COP of the two-adsorber bed ACS increase by 28% and 47%, respectively.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Air conditioning and refrigeration (A/C-R) systems are responsible for using about 30% of the total worldwide energy produced \[1\]. In the automotive sector, A/C systems of light-duty vehicles consume about 40 billion liters of fuel per year in the U.S. alone [2]. A compressor of a vapor compression refrigeration cycle (VCRC) installed in a typical medium size sedan consumes up to 5–6 kW of the power generated by an internal combustion engine (ICE) to produce the required cooling. This power is sufficient for a 1200-kg sedan to cruise at 56 km/h [2]. Furthermore, about 70% of the total fuel energy released in an ICE is dissipated as a waste heat through the engine coolant and the exhaust gas [3]. Waste heat-driven adsorption cooling systems (ACS) are potential replacements for VCRCs that can significantly reduce fuel consumption and the environmental impacts of A/C systems where low-grade thermal energy is available.

A waste heat-driven ACS uses an adsorbate, such as water or methanol, which is adsorbed and desorbed from the surface of a porous adsorbent, such as zeolite, silica gel, or activated carbon. Most of these materials are non-toxic, non-corrosive, and inexpensive [4], making ACS a safe and environmentally friendly technology. An ACS operates more quietly than a VCRC and is easier to maintain because its only moving parts are valves [5]. However, current ACS have not been commercialized for light-duty vehicles due to their bulkiness and heavy weight. The main challenges facing this technology are low specific cooling power (SCP = cooling energy/(adsorbent mass × cycle time)) and coefficient of performance (COP = cooling energy/input energy) that originate from the low thermal conductivity of adsorbent particles (~0.1–0.4 W/m.K) [6–9] and the low mass diffusivity of adsorbent-adsorbate pairs (10^{-8}–10^{-14} m^2/s) [7,10].

To overcome these obstacles, different composite adsorbent materials with high thermal conductivity and high adsorbate...
uptake capacity have been developed such as the ones reported in Refs. [11,12]. Besides using a proper adsorbent material, the designs of the adsorber beds, condenser, and evaporator (the main components of an ACS) can significantly affect the SCP and COP of the system. Sharafan and Bahrami [13] conducted a comprehensive literature review on the effects of nine different adsorbent bed designs on the performance of an ACS designed for vehicle A/C applications. They identified the SCP, adsorber bed to adsorbent mass ratio (AAMR), and COP as the most influential parameters for evaluating the performance of an ACS. The COP was found to have a lower importance than the SCP and AAMR because the supplied waste heat for regeneration of the adsorber beds was abundant in a vehicle [13]. However, an ACS with a higher COP was preferred. The AAMR represents the dead to active mass ratio and should be minimized for vehicle A/C applications. Comparing more than 66 experiments with different adsorbent bed designs reported in the literature showed that finned tube adsorber beds provided the best performance in comparison with other types of adsorbent bed designs [13]. Table 1 provides further details on the performance of waste heat-driven ACS with different finned tube adsorber beds and working pairs.

Of the studies cited in Table 1, those with finned tube adsorber beds packed or coated with composite salts in porous matrixes, such as expanded graphite + NaBr [49] and LiNO3-Silica KSK [38–40], and those packed with silicoaluminophosphate AQSOA FAM-Z02 [46] and Sapo-34 [54,55] had the highest SCP values. In a conceptual discussion on the optimal adsorbent for ACS applications, Aristov [12] highlighted the potential improvements in an ACS performance from using composite salts in porous matrixes, but leakage of salt solutions from the host matrixes during adsorption might cause corrosion of metal parts in an adsorber bed and, consequently, emission of non-condensable gases. Also, Okunev and Aristov [57] investigated the importance of adsorbent isobar shape on the SCP of an ACS. Their analysis indicated that with proper selection of an adsorbent material with respect to the operating conditions, the SCP could improve by a factor of 1.5 while other effective parameters, such as the adsorbent particle size, remained unchanged.

Ferroaluminophosphate (AQSOA FAM-Z01), silicoaluminophosphate (AQSOA FAM-Z02), and aluminum phosphate (AQSOA FAM-Z05) are synthetic zeolite-based materials with high durability (60,000–200,000 cycles) developed for A/C and dehumidification applications by Mitsubishi Chemical Ltd [58]. These adsorbents have an “S” shaped adsorption isotherm, as shown in Refs. [59–61], which provides quick water adsorption and desorption within a narrow pressure range. Comparing the adsorption isotherms of FAM-Z01, FAM-Z02, and FAM-Z05 indicates that FAM-Z02 provides higher water vapor uptake capacity [59–62] and a broader desorption temperature (75–95 °C). For example, equilibrium water uptake differences of FAM-Z01 and FAM-Z02 at adsorption temperature of 30 °C and water vapor saturation temperature of 15 °C, and desorption temperature of 90 °C and water vapor saturation temperature of 30 °C are 0.185 and 0.254 kg/kg dry adsorbent, respectively [63–66]. This shows that FAM-Z02 has 37% higher equilibrium water uptake than FAM-Z01 between adsorption and desorption. Therefore, in this study, FAM-Z02 adsorbent is used to pack the adsorber beds. Further details about FAM-Z02 properties including density, heat capacity, and equilibrium uptake rate have been reported in Refs. [60,61]. Sharafan et al. [67] experimentally showed the effects of different finned tube adsorber bed designs packed with 2 mm FAM-Z02 particles with respect to their heat transfer surface area and fin

Table 1

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Adsorber bed type and weight</th>
<th>Working pairs</th>
<th>Adsorbent packing method</th>
<th>COP</th>
<th>SCP (W/kg)</th>
<th>AAMR (kg metal/kg adsorbent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[14–16]</td>
<td>Aluminum finned tube, 4.6 kg*</td>
<td>Activated carbon/ammonia</td>
<td>Consolidated</td>
<td>0.06*</td>
<td>33*</td>
<td>5.75*</td>
</tr>
<tr>
<td>[17]</td>
<td>SS* finned tube</td>
<td>Silica gel/methanol</td>
<td>Loose grain</td>
<td>—</td>
<td>30 —</td>
<td>—</td>
</tr>
<tr>
<td>[18–20]</td>
<td>176-finned tubes, 260 kg</td>
<td>Zeolite 13X/water</td>
<td>Loose grain</td>
<td>0.38</td>
<td>22.8*</td>
<td>5</td>
</tr>
<tr>
<td>[21,22]</td>
<td>SS finned tube, 3.3 kg</td>
<td>Zeolite 13X/water</td>
<td>Loose grain</td>
<td>0.25</td>
<td>28.5</td>
<td>1.86</td>
</tr>
<tr>
<td>[23]</td>
<td>2-bed Aluminum finned tube, 15 kg</td>
<td>Silica gel + CaCl2(SWS-1L)/water</td>
<td>Loose grain</td>
<td>0.43*</td>
<td>23.5*</td>
<td>3</td>
</tr>
<tr>
<td>[24–25]</td>
<td>2-bed finned tube, 32.7 kg</td>
<td>AQSOA FAM-Z02/water</td>
<td>Loose grain</td>
<td>0.27*</td>
<td>131.5*</td>
<td>7.9</td>
</tr>
<tr>
<td>[26]</td>
<td>SS finned tube</td>
<td>Silica gel/water</td>
<td>Loose grain</td>
<td>0.43</td>
<td>48*</td>
<td>0.654</td>
</tr>
<tr>
<td>[27]</td>
<td>2-bed finned tube</td>
<td>Hydrophobic Y zeolite</td>
<td>Coated</td>
<td>0.11*</td>
<td>25*</td>
<td>3</td>
</tr>
<tr>
<td>[28]</td>
<td>2-bed finned tube</td>
<td>Silica gel/water</td>
<td>Loose grain</td>
<td>0.29*</td>
<td>35*</td>
<td>—</td>
</tr>
<tr>
<td>[29]</td>
<td>2-bed finned tube</td>
<td>Act. carbon + CaCl2 (1:4)/ammonia</td>
<td>Consolidated</td>
<td>0.19*</td>
<td>70.8*</td>
<td>—</td>
</tr>
<tr>
<td>[30–33]</td>
<td>2-bed finned tube</td>
<td>Silica gel + CaCl2(SWS-1)/water</td>
<td>Coated</td>
<td>0.15</td>
<td>137*</td>
<td>3.47</td>
</tr>
<tr>
<td>[34]</td>
<td>2-bed finned tube</td>
<td>Silica gel + CaCl2/water</td>
<td>Loose grain</td>
<td>0.23</td>
<td>43</td>
<td>—</td>
</tr>
<tr>
<td>[36,37]</td>
<td>2-bed Aluminum finned tube, 13.6 kg</td>
<td>Silica gel/water</td>
<td>Loose grain</td>
<td>0.29</td>
<td>158*</td>
<td>4.53</td>
</tr>
<tr>
<td>[38–40]</td>
<td>Aluminum finned tube, 0.636 kg</td>
<td>LiNO3-Silica KSK/water</td>
<td>Loose grain</td>
<td>0.18*</td>
<td>318*</td>
<td>1.82</td>
</tr>
<tr>
<td>[41–42]</td>
<td>28 finned tube with 2.5 mm fin spacing</td>
<td>Silica gel + LiCl/water</td>
<td>Loose grain</td>
<td>0.41</td>
<td>122</td>
<td>—</td>
</tr>
<tr>
<td>[43–45]</td>
<td>2-bed Aluminum finned tube</td>
<td>Silica gel/water</td>
<td>Loose grain</td>
<td>0.41</td>
<td>76.5</td>
<td>—</td>
</tr>
<tr>
<td>[46]</td>
<td>2-bed Aluminum finned tube, 2.3 kg</td>
<td>AQSOA FAM-Z02/water</td>
<td>Loose grain</td>
<td>0.45</td>
<td>330.2</td>
<td>1.4</td>
</tr>
<tr>
<td>[47,48]</td>
<td>8 tubes with Aluminum fins + steel pipes, 40 kg</td>
<td>Expanded graphite + CaCl2/ammonia</td>
<td>Loose grain</td>
<td>0.11</td>
<td>7.0</td>
<td>—</td>
</tr>
<tr>
<td>[49]</td>
<td>4-bed SS shell and Aluminum finned tube</td>
<td>Expanded graphite + NaBr/ammonia</td>
<td>Loose grain</td>
<td>0.35</td>
<td>296</td>
<td>2.09</td>
</tr>
<tr>
<td>[50]</td>
<td>2-bed finned tube</td>
<td>Silica gel/water</td>
<td>Loose grain</td>
<td>0.31</td>
<td>46.5*</td>
<td>—</td>
</tr>
<tr>
<td>[51]</td>
<td>3-bed Aluminum finned tube, 0.16, 0.13, and 0.14 kg</td>
<td>AQSOA FAM-Z02/water</td>
<td>Loose grain</td>
<td>0.16</td>
<td>78.5</td>
<td>—</td>
</tr>
<tr>
<td>[52]</td>
<td>Aluminun finned tube</td>
<td>AQSOA FAM-Z02 + silica gel/water</td>
<td>Coated + Loose grain</td>
<td>296</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>[53,54]</td>
<td>Aluminun finned tube</td>
<td>Sapo-34/water</td>
<td>Coated</td>
<td>0.24</td>
<td>675</td>
<td>6</td>
</tr>
<tr>
<td>[55]</td>
<td>2-bed copper finned tube</td>
<td>Zeolite 13X + CaCl2/water</td>
<td>Loose grain</td>
<td>0.4</td>
<td>498</td>
<td>1.96</td>
</tr>
<tr>
<td>[56]</td>
<td>2-bed copper finned tube</td>
<td>Zeolite 13X + CaCl2/water</td>
<td>Loose grain</td>
<td>0.16</td>
<td>53</td>
<td>—</td>
</tr>
</tbody>
</table>

* These parameters are extracted based on the reported experimental data at $T_{h, i} = 90^\circ C$, $T_e, i = 30^\circ C$, $T_{coolant, i} = 30^\circ C$, and $T_{skilled, i} = 15^\circ C$. For zeolite 13X/water: $T_{h, i} = 180^\circ C$.

a Stainless steel.
spacing on in-situ water uptake rate measurements of FAM-Z02. The direct mass measurements showed that the adsorber bed with 2.8 m² heat transfer surface area and 2.5 mm fin spacing could increase the SCP and COP of the ACS by 3.1 and 2.9 times, respectively, in comparison with the adsorber bed with 0.235 m² heat transfer surface area and 8.5 mm fin spacing. Following these results, in this study, the adsorber bed with high heat transfer surface area and small fin spacing was installed in our ACS test bed to study the effects of the amount of adsorbent material and the number of adsorber beds on the SCP and COP of ACS when the other components of the cycle, namely, the condenser, evaporator and expansion valve, remained unchanged. Also, detailed parametric study was performed to investigate the effects of cycle time and operating conditions on the SCP and COP of ACS.

2. ACS thermodynamic cycle

The thermodynamic cycle of an ACS is comprised of two main steps: heating-desorption-condensation and cooling-adsorption-evaporation. An ACS with one adsorber bed generates evaporative cooling power intermittently. To produce a continuous cooling power, two or more adsorber beds are required, such as one shown in Refs. [68–70]. Fig. 1a depicts a schematic of a typical two-adsorber bed ACS comprised of two adsorber beds, a condenser, an expansion valve, and an evaporator. Fig. 1b shows the thermodynamic processes in an ACS which is divided into two subcycles: (i) an adsorbent cycle (on the right side), and (ii) an adsorbate cycle (on the left side). As shown in Fig. 1b, the adsorbent cycle includes four steps: (1) isosteric heating (ih); process 1–2, (2) isobaric desorption (ibd); process 2–3’, (3) isosteric cooling (ic); process 3’–4, and (4) isobaric adsorption (iba); process 4’–1. Isosteric processes occur at a constant specific volume and isobaric processes occur at a constant pressure. The adsorbate cycle shown in Fig. 1b includes three steps: (1) isobaric condensation in the condenser; process 2–3, (2) isenthalpic process in the expansion valve; process 3–4, and (3) isobaric evaporation in the evaporator; process 4–1.

During step 1–2, the adsorbent-adsorbate pair absorbs heat of Q_{ab} from an external heat source in an isosteric heating process. In this step, the pressure of the adsorber bed increases due to the adsorbate desorption from the adsorbent particles. This process is continued until the pressure of the adsorber bed reaches the pressure of the condenser and then the inlet valve to the condenser is opened. In step 2–3’, the external heat source continuously heats the adsorber bed (Q_{ab}) during an isobaric desorption process, the adsorbate leaves the adsorber bed, and is condensed inside the condenser through an isobaric condensation process (step 2–3). The total heat transfer to the adsorber bed, $Q_{total\; heating}$, during a desorption process is the sum of Q_{in} and Q_{ab}. Upon reaching point 3’, the maximum temperature of the adsorber bed at the end of desorption time, the valve between the adsorber bed and the condenser is closed and during an isosteric cooling process (step 3’–4’), the temperature of the adsorber bed reduces by dissipating the heat of Q_{sc} to a heat sink. In step 3–4, the adsorbate inside the condenser passes through the expansion valve and enters to the evaporator. During step 4–1, the adsorbate absorbs the heat of Q_{evap} from the environment of interest and evaporates. At the same time, the value between the evaporator and the adsorber bed is opened and the adsorbent adsorbs the vaporous adsorbate through an isobaric adsorption process (step 4’–1) and releases heat of Q_{abs}. This process continues until reaching the end of adsorption time. The total heat removed from the adsorber bed, $Q_{total\; cooling}$, during an adsorption process is the sum of Q_{e} and Q_{iba}. The cycle time is the sum of desorption and adsorption times.

3. Experimental test bed

An ACS with one or two adsorber beds made up of more than sixty different components was built in the lab. Fig. 2a shows a schematic of the two-adsorber bed ACS including heating and cooling circuits connected to the adsorber beds. The system was built modular to enable future modifications. The ACS was equipped with four temperature control systems (TCS) or thermal baths to control the adsorption and desorption temperatures in the adsorber beds, and the condensation and evaporation temperatures in the condenser and evaporator, respectively. Four check valves ($V_1–V_4$) with low cracking pressure were installed before and after the adsorber beds to control the adsorption and desorption processes, and eight two-way solenoid valves ($V_5–V_12$) were installed on the TCS HF and TCS C to intermittently heat up and cool down adsorber beds 1 and 2 as shown in Fig. 2a. Further information about the valves and their arrangement can be found in Ref. [72].

Fig. 2b and c show the one- and two-adsorber bed ACS test beds including the main components. A copper shell-and-tube heat exchanger with helical fins on the outer surface of the tubes was used as the condenser. A needle valve with high precision flow adjustment was used as the expansion valve and a low-operating pressure evaporator with capillary-assisted tubes was designed and installed on the cycle. Type T thermocouples (Omega, model #5SRTC-TT-36–36) with accuracy of 0.75% of reading and pressure transducers with 0–345 kPa operating range (Omega, model #PX309-005AI) and ±0.4% accuracy were installed to monitor and record the temperature and pressure variations in each component of the ACS over time. Positive displacement flow meters (FLOMEC, Model # OM015S001-222) with accuracy of 0.5% of reading were installed on the adsorber beds to measure the heating and cooling.
fluid flow rates. Similar flow meters were also installed on the condenser and evaporator to measure the coolant and chilled water flow rates, respectively. The heat transfer fluid used in the TCSs for heating and cooling of the adsorber beds was silicone oil (Julabo Inc., Thermal P60) that had a density change from 909 kg/m³ at 30 °C to 854 kg/m³ at 90 °C.

An engine oil cooler manufactured by Hayden Automotive (model #1268) was used as an adsorber bed, as shown in Fig. 3a, and was placed in custom-built vacuum chambers shown in Fig. 2b and c. Fig. 3b shows FAM-Z02 adsorbent particles packed in the adsorber bed. In this study, different amounts of adsorbent material (1.9, 1.0, and 0.5 kg) was packed in the adsorber bed to investigate their effects on the ACS performance. The intra-particle diffusion and inter-particle diffusion did not change for different amount of adsorbent because the thickness of adsorbent (W in Fig. 3a) was kept constant for all experiments. For 1.9 kg of adsorbent, the adsorber bed was packed fully. For 1.0 kg of adsorbent, the adsorber bed was packed in about half of the adsorber bed (H changed to ~ H/2 in Fig. 3a). Therefore, the heat transfer surface area reduced from 2.8 m² to 1.47 m². Similarly, for 0.5 kg of adsorbent, the adsorber bed was packed in about a quarter of the adsorber bed (H changed to H/2 and L changed to L/2 in Fig. 3a). This caused the heat transfer surface area to reduce to 0.74 m². Further details about the ACS test bed and operating conditions are summarized in Table 2.

Water was used in the ACS as the refrigerant (adsorbate) and, as a result, the ACS operated under vacuum pressure. To produce enough cooling inside the evaporator, the design of evaporator was different from the conventional evaporator designs [73]. A capillary-assisted evaporator was designed and installed on the system [74], as shown in Fig. 4. The tubes inside the evaporator had circumferential rectangular-cross sectional fins with 0.635 mm fin spacing (40 fins per inch (FPI)). Having small fin spacing assists water to fill the volume between two consecutive fins (groove) and cover the whole circumferential surface of the tube. Due to surface

Fig. 2. (a) Schematic of the two-adsorber bed ACS (black line: adsorbate path, and blue and pink lines: heat transfer fluid paths), (b) the one- and (c) two-adsorber bed ACS experimental test beds. Numbers in (b) and (c): 1- adsorber bed(s), 2-condenser, 3-expansion valve, and 4-evaporator. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
tension, the liquid-vapor interface inside the rectangular-groove forms a curvature which increases gradually along the circumferential direction [75]. The extended meniscus region is comprised of a non-evaporating region, evaporating thin film region, and bulk region [76]. Heat transfer is concentrated at the evaporating thin film region where the liquid film is extremely thin and the thermal resistance is very low. This creates an effective evaporating flow [77]. Further geometric details of the capillary-assisted evaporator are provided in Table 3.

Before running the experiments, the adsorber beds packed with the FAM-Z02 were heated using a 90 °C heating fluid for 8 h and simultaneously evacuated to completely dry the FAM-Z02 out. The heating and cooling fluid inlet temperatures to the adsorber beds, and the coolant and chilled water inlet temperatures to the
condenser and evaporator were set at temperatures given in Table 2. By setting the cycle time, water was adsorbed and desorbed by FAM-Z02 particles packed in the adsorber beds, and condensation and evaporation occurred inside the condenser and evaporator, respectively. An experiment at constant operating conditions was performed continuously until the dynamic behavior of the ACS became consistent. At this stage, the thermodynamic cycle of ACS was repeated three more times to ensure the reproducibility of the collected data.

4. Data analysis

To evaluate the performance of an ACS, the COP and SCP of the system should be calculated. Eq. (1) gives the total evaporative cooling energy during an adsorption process:

\[
Q_{evap}(J) = \int_{adsorption} m_{chilled} c_p.c_{chilled} (T_{chilled,i} - T_{chilled,o}) dt
\]

(1)

where \(m_{chilled} \) and \(c_p.c_{chilled} \) are the chilled water mass flow rate and heat capacity, and \(T_{chilled,i} - T_{chilled,o} \) is the temperature difference between the chilled water inlet and outlet temperatures. The total condensation energy is calculated as follows:

\[
Q_{cond}(J) = \int_{desorption} m_{coolant} c_p.c_{coolant} (T_{coolant,i} - T_{coolant,o}) dt
\]

(2)

where \(m_{coolant} \) is the coolant water mass flow rate and \(T_{coolant,i} - T_{coolant,o} \) is the temperature difference between the coolant water inlet and outlet temperatures. The total heat transfers to the adsorber beds during an adsorption or desorption process are calculated by:

\[
Q_{total \ cooling}(J) = \int_{adsorption} m_{cf} c_p.c_{cf} (T_{cf,i} - T_{cf,o}) dt
\]

(3)

\[
Q_{total \ heating}(J) = \int_{desorption} m_{hf} c_p.hf (T_{hf,i} - T_{hf,o}) dt
\]

(4)

where \(m_{cf} \) and \(m_{hf} \) are the cooling and heating fluid mass flow rates, and \(T_{cf,i} - T_{cf,o} \) and \(T_{hf,i} - T_{hf,o} \) are the temperature differences between the cooling and heating fluid inlet and outlet temperatures, respectively. Using Eqs. (1) and (4), the COP and SCP of an ACS during one cycle are determined by:

\[
COP = \frac{Q_{evap}}{Q_{total \ heating}}
\]

(5)

SCP(W/kg) = \frac{Q_{evap}}{m_{adsorbent} \times t_{cycle}}

(6)

where \(m_{adsorbent} \) in Eq. (6) is the mass of dry adsorbent packed inside an adsorber bed and \(t_{cycle} \) is the cycle time (sum of adsorption and desorption times). The maximum uncertainties in the calculations of COP and SCP were 13% and 11%, respectively (see the Appendix).

5. Results and discussion

5.1. Effects of adsorbent mass on the performance of a one-adsorber bed ACS

The one-adsorber bed ACS was packed with three different amounts of FAM-Z02 (1.9, 1.0, and 0.5 kg). The adsorber bed packed with more adsorbent mass creates higher suction and discharge pressures during adsorption and desorption, respectively. However, the evaporator and condenser should be able to supply sufficient evaporation and condensation rates, respectively. In the case of a mismatch between these components, the overall performance of ACS is affected.

Fig. 5 shows the temperature and pressure variations inside the one-adsorber bed ACS packed with 1.0 kg of FAM-Z02 at cycle time of 20 min. It can be seen that the dynamic behavior of ACS is consistent for three continuous cycles and, as a result, the performance of the system is reproducible. During adsorption, uptake of the vapor by the adsorbent material lowers the adsorber bed pressure, \(P_{bed} \), to less than the evaporator pressure, \(P_{evap} \). During this process, marked “Ads.” in Fig. 5, the adsorber bed temperature is maintained by the cooling fluid that dissipates the heat of adsorption. Due to the suction pressure created by the adsorber bed, evaporation happens inside the evaporator, heat is transferred from the chilled water to the adsorbate, and the chilled water temperature reduces at the outlet of the evaporator, \(T_{chilled, o} \) as shown in Fig. 5a. In a desorption process, the adsorber bed is heated, as shown in the region demarcated “Des.” in Fig. 5, and the adsorber bed pressure, \(P_{bed} \), increases, as shown in Fig. 5b. Due to the pressure gradient between the adsorber bed and the condenser, the adsorbate desorbed from the FAM-Z02 flows to the condenser. Condensation happens inside the condenser and heat of condensation is transferred from the adsorbate to the coolant water. Therefore, the coolant water outlet temperature, \(T_{coolant, o} \), increases as shown in Fig. 5a.

The 206–260 Pa pressure difference between the adsorber bed and the evaporator during adsorption shown in Fig. 5b indicates that the adsorbate evaporation rate in the evaporator is not sufficient to supply enough water vapor to the FAM-Z02 packed in the adsorber bed. The mismatch between the water uptake rate of FAM-Z02 and the water evaporation rate inside the evaporator significantly affect the SCP and COP of the system. Fig. 6 shows the effects of different adsorber bed loads of FAM-Z02 (0.5, 1.0, 1.9 kg) on the SCP and COP of the one-adsorber bed ACS under different cycle times. It can be seen in Fig. 6 that lowering the amount of FAM-Z02 increases the SCP of the system, while it lowers the COP. Increasing the SCP of the ACS by decreasing the mass of the FAM-Z02 from 1.9 to 0.5 kg under a constant cycle time indicates the enough vaporous adsorbate supply to the FAM-Z02 during adsorption. However, the COP of ACS decreases by decreasing the mass of FAM-Z02 under a constant cycle time because the AAMR increases from 1.5 to 5.7 kg metal/kg dry adsorbent.

Lambert and Jones [78] reported that the total daily commute time in the U.S. was about 40 min, = 20 min to work and = 20 min returning home. Therefore, the cycle time of 20 min was selected.

Table 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube model</td>
<td>Turbo Chil-40 FPI (Wolverine Tube Inc.)</td>
</tr>
<tr>
<td>Outer diameter (mm)</td>
<td>19.05 (3/4")</td>
</tr>
<tr>
<td>Fin type</td>
<td>Continuous and parallel fins</td>
</tr>
<tr>
<td>Number of fins per meter</td>
<td>1575 (40 fins per inch)</td>
</tr>
<tr>
<td>Fin spacing (mm)</td>
<td>0.635</td>
</tr>
<tr>
<td>Fin Height (mm)</td>
<td>1.473</td>
</tr>
<tr>
<td>Min. wall under fins (mm)</td>
<td>0.635</td>
</tr>
<tr>
<td>Inside surface area (m²/m)</td>
<td>0.051</td>
</tr>
<tr>
<td>Outside surface area (m²/m)</td>
<td>0.263</td>
</tr>
<tr>
<td>Tube length (m)</td>
<td>1.54</td>
</tr>
</tbody>
</table>
for further analysis of the performance of the one-adsorber bed ACS. Effects of heating and cooling fluid inlet temperatures to the adsorbed bed on the SCP and COP of ACS are shown in Fig. 7. It can be seen in Fig. 7a and b that by increasing the heating fluid inlet temperature from 70 to 90 °C, the SCP and COP of the system increase. As shown in Fig. 7a, at a heating fluid inlet temperature of 70 °C, the adsorber bed with 1.9 kg of FAM-Z02 provides the SCP of 38.7 W/kg which is 45% higher than that with 0.5 kg of FAM-Z02. At the heating inlet temperatures of 80 and 90 °C, however, the SCPs of ACS with 0.5 kg of FAM-Z02 are 78.8 and 119 W/kg which are 15% and 82% higher than those packed with 1.9 kg of FAM-Z02, respectively. Such a behavior is not observed in the COP of the ACS, as shown in Fig. 7b. At a constant heating fluid inlet temperature, the COP decreases by decreasing the mass of FAM-Z02 from 1.9 to 0.5 kg because of the increase in the AAMR.

Increasing the cooling fluid inlet temperature to the adsorber bed reduces the SCP and COP of the ACS for all three masses of FAM-Z02 as shown in Fig. 7c and d. The results also show that at a specific cooling fluid inlet temperature, increasing the mass of FAM-Z02 decreases the SCP and increases the COP of ACS. Finally, Fig. 7 indicates that the performance of ACS packed with FAM-Z02 is more sensitive to the heating fluid inlet temperature (desorption temperature) rather than the cooling fluid inlet temperature (adsorption temperature).

Increasing the coolant water inlet temperature to the condenser decreases the rate of adsorbate condensation inside the condenser and therefore reduces the SCP and COP of the system as shown in Fig. 8a and b. The FAM-Z02 is only partially dried out under these cycle conditions. Increasing the mass of FAM-Z02 at a constant coolant water inlet temperature causes the SCP to decrease and the COP to increase.

Increasing the chilled water inlet temperature to the evaporator increases the water evaporation rate and the evaporator pressure, and consequently, more adsorbate is supplied to the FAM-Z02 within a constant adsorption time. As shown in Fig. 8c and d, increasing the chilled water inlet temperature increases the SCP and COP of ACS. Further, the SCP of the ACS increases and the COP decreases when the mass of FAM-Z02 reduces from 1.9 to 0.5 kg. As discussed in Section 1, the SCP of an ACS designed for vehicle A/C applications is more important than the COP as the waste heat available from an ICE is abundant. As a result, the adsorber bed packed with 0.5 kg of FAM-Z02 is considered for the next set of experiments.

Fig. 5. Temperature and pressure variations in different components of the ACS for 1.0 kg of FAM-Z02 and cycle time of 20 min (other operating conditions are as given in Table 2).

Fig. 6. Variations in SCP and COP of the one-adsorber bed ACS packed with different amounts of FAM-Z02 vs. cycle time (Other operating conditions are as given in Table 2).
5.2. Effects of the number of adsorber beds on the performance of an ACS

One of the limitations of the one-adsorber bed ACS was intermittent cooling power generation in the evaporator, especially for short cycle times, when the thermal mass of the evaporator became important. The thermal mass of the evaporator in an ACS postpones the heat transfer from the chilled water to the adsorbate inside the evaporator. Multi-adsorber bed systems produce continuous cooling in the evaporator. However, increasing the number of adsorber beds adds to the overall mass and complexity of the ACS. Knowing these limitations, a second adsorber bed was added to the one-adsorber bed ACS and its performance was studied and compared against that of the one-adsorber bed ACS.

Fig. 7. Variations in SCP and COP of the one-adsorber bed ACS packed with different amounts of FAM-Z02 vs. heating and cooling fluid inlet temperatures entering to the adsorber bed (Other operating conditions are as given in Table 2).

Fig. 8. Variations in SCP and COP of the one-adsorber bed ACS packed with different amounts of FAM-Z02 vs. coolant and chilled water inlet temperatures entering to the condenser and evaporator (Other operating conditions are as given in Table 2).
The coolant and chilled water temperature variations in the one- and two-adsorber bed ACS packed with 0.5 kg of FAM-Z02 and cycle time of 20 min are shown in Fig. 9. The regions demarcated on the chilled water temperatures in Fig. 9 indicate that the chilled water outlet temperature in the two-adsorber bed ACS is more uniform than that in the one-adsorber bed ACS and does not reach to the chilled water inlet temperature because of continuous evaporation inside the evaporator. Therefore, the effect of thermal mass of the evaporator becomes less important to the performance of ACS especially for short cycle times.

The effects of one- and two-adsorber bed ACS on the SCP under different cycle times are shown in Fig. 10a. The SCP of one-adsorber bed ACS increases continuously as the cycle time increases from 8 to 30 min. However, the SCP of two-adsorber bed ACS peaks at 152.5 W/kg for a cycle time of 20 min before decreasing to 132.0 W/kg for a cycle time of 30 min. Fig. 10a indicates that the two-adsorber bed ACS resulted in higher SCPs under short cycle times (8–20 min). By increasing the cycle time from 20 to 30 min, the effect of thermal mass of evaporator becomes less important and the SCP of two-adsorber bed ACS drops.

The COP of the two-adsorber bed ACS is higher than that of one-adsorber bed ACS as shown in Fig. 10b. At a cycle time of 8 min, the COPs of one- and two-adsorber bed ACS are 0.11 and 0.12, respectively. At a cycle time of 20 min, the COP of two-adsorber bed ACS in comparison with that of one-adsorber bed ACS increases by 47% from 0.23 to 0.34. The highest COP, 0.39, is observed for the two-adsorber bed ACS operated with the 30 min cycle time. However, considering both the SCP and COP, the two-adsorber bed ACS has the best performance at cycle time of 20 min.

Fig. 11 shows the effects of heating and cooling fluid inlet temperatures to the adsorber beds on the performance of the one- and two-adsorber bed ACS packed with 0.5 kg of FAM-Z02 and operated with a 20 min cycle time. Fig. 11a shows that, at constant heating and cooling fluid inlet temperatures, the SCP and COP increase by replacing the one-adsorber bed ACS with the two-adsorber bed ACS. At heating fluid inlet temperature of 70 °C, shown in Fig. 11a and b, the SCP and COP of two-adsorber bed ACS are equal to 52.6 W/kg and 0.17 which are 98% and 105% higher than those of the one-adsorber bed ACS. Similarly, Fig. 11c and d show that at the cooling fluid inlet temperature of 40 °C, the SCP and COP of two-adsorber bed ACS are 51% and 47% higher than those of one-adsorber bed ACS.

The effects of coolant and chilled water inlet temperatures to the condenser and evaporator on the SCP and COP of one- and two-adsorber bed ACS are shown in Fig. 12. It can be seen in Fig. 12a and b that increasing the coolant water inlet temperature from 30

![Fig. 9. Coolant and chilled water inlet and outlet temperature variations in (a) the one-adsorber bed ACS and (b) the two-adsorber bed ACS packed with 0.5 kg of FAM-Z02 and cycle time of 20 min (Other operating conditions are as given in Table 2).](image)

![Fig. 10. Variations in SCP and COP of the one- and two-adsorber bed ACS packed with 0.5 kg of FAM-Z02 vs. cycle time (Other operating conditions are as given in Table 2).](image)
to 40 °C, decreases the SCP and COP of ACS because of the reduce in the adsorbate condensation rate during desorption. Also, Fig. 12a and b display that the SCP and COP of two-adsorber bed ACS is always higher than those of one-adsorber bed ACS under different coolant water inlet temperatures to the condenser.

Fig. 12c and d show that the SCP and COP of ACS increase with increasing the chilled water inlet temperature to the evaporator. The SCP and COP of two-adsorber bed ACS increase from 78 W/kg and 0.17 at 10 °C to 191.5 W/kg and 0.35 at 20 °C. Similar to previous cases, the SCP and COP of the two-adsorber bed ACS are always higher than those of one-adsorber bed ACS.

6. Conclusion

In this study, the effects of adsorbent mass and the number of adsorber beds on the SCP and COP of ACS were investigated. A
comprehensive parametric study was performed to investigate the variations of SCP and COP of ACS under different cycle times and operating conditions. Three different amounts of FAM-Z02 were packed in the one-adsorber bed ACS. The results showed that reducing the mass of FAM-Z02 from 1.9 to 0.5 kg increased the SCP and COP of ACS under short cycle times (8–20 min). Addition of the second adsorber bed to the one-adsorber bed ACS indicated that the SCP and COP increased by 28% and 47% at cycle time of 20 min. Also, the results showed that the SCP and COP of the two-adsorber bed ACS were always higher than those of the one-adsorber bed ACS due to the reduction in the effects of the thermal mass of the evaporator especially at short cycle times. Finally, from this study, it could be concluded that the mass of adsorbent packed in adsorber beds should be optimized to reach the highest performance of the ACS and reduce the overall mass of the system.

Acknowledgment

The authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Automotive Partnership Canada Grant No. APCP| 401826-10.

Appendix

The systematic uncertainty in the evaporative cooling energy calculations, Eq. (1), is:

\[
\left(\frac{\delta Q_{\text{evap}}}{Q_{\text{evap}}} \right)_{\text{systematic}} = \sqrt{\left(\frac{\delta m_{\text{chilled}}}{m_{\text{chilled}}} \right)^2 + \left(\frac{\delta (T_{\text{chilled},i} - T_{\text{chilled},o})}{T_{\text{chilled},i} - T_{\text{chilled},o}} \right)^2}
\]

where,

\[
\delta (T_{\text{chilled},i} - T_{\text{chilled},o}) / T_{\text{chilled},i} - T_{\text{chilled},o} = \sqrt{\left(\frac{\delta T_{\text{chilled},i}}{T_{\text{chilled},i}} \right)^2 + \left(\frac{\delta T_{\text{chilled},o}}{T_{\text{chilled},o}} \right)^2}
\]

\[
= \sqrt{0.0075^2 + 0.0075^2} = 0.01
\]

Therefore, the maximum systematic uncertainty in the calculation of evaporative cooling energy is:

\[
\left(\frac{\delta Q_{\text{evap}}}{Q_{\text{evap}}} \right)_{\text{systematic}} \times 100 = \sqrt{0.005^2 + 0.01^2} \times 100 = 1\%
\] (9)

Also, the maximum standard deviation for \(Q_{\text{evap}} \) due to the random uncertainties in the experiments was 10%. As a result, the maximum uncertainty in the calculation of \(Q_{\text{evap}} \) during the experiments was 11% (1% + 10%). Similarly, the maximum uncertainty in the calculation of \(Q_{\text{total, heating}} \) was 7% (1% + 6%). Therefore, the maximum uncertainties in the calculations of COP and SCP were as follows:

\[
\left(\frac{\delta \text{SCP}}{\text{SCP}} \right) \times 100 = \sqrt{\left(\frac{\delta Q_{\text{evap}}}{Q_{\text{evap}}} \right)^2 + \left(\frac{\delta Q_{\text{total, heating}}}{Q_{\text{total, heating}}} \right)^2} \times 100
\]

\[
= \sqrt{0.11^2 + 0.07^2} \times 100 = 13\%
\] (10)

\[
\frac{\delta \text{COP}}{\text{COP}} \times 100 = \sqrt{\left(\frac{\delta Q_{\text{evap}}}{Q_{\text{evap}}} \right)^2 + \left(\frac{\delta Q_{\text{total, heating}}}{Q_{\text{total, heating}}} \right)^2} \times 100
\]

\[
= \sqrt{0.11^2 + 0.07^2} \times 100 = 11\%
\] (11)

Nomenclature

\(A \) heat transfer surface area (m²)
\(AAMR \) adsorber bed to adsorbent mass ratio (kg adsorbate/kg dry adsorbent)
\(\text{Ads.} \) adsorption
\(C_p \) heat capacity at constant pressure (J/kg.K)
\(\text{COP} \) coefficient of performance
\(\text{Des.} \) desorption
\(m \) mass (kg)
\(m_c \) mass flow rate (kg/s)
\(P \) pressure (kPa)
\(Q \) heat transfer (J)
\(\text{SCP} \) specific cooling power (W/kg dry adsorbant)
\(T \) temperature (K)
\(t \) time (s)
\(\tau_{\text{cycle}} \) cycle time (s)

Subscripts

adsorbate adsorbate
adsorbent adsorbent particles
bed adsorber bed
\(cf \) cooling fluid
chilled chilled water
cond condenser
coolant coolant water
evap evaporator
hf heating fluid
i in
o out
sat. saturation

References

[9] Sharafan A, Fayazmanesh K, McCague C, Bahrami M. Thermal conductivity and contact resistance of mesoporous silica gel adsorbents bound with

[38] Coldworth MJ. Measurements of water vapour sorption isotherms for RD
silica gel, AQSOA-Z01, AQSOA-Z02, AQSOA-Z05 and CECA zeolite 3A. Micro-
j.micromeso.2014.04.046.

[62] Dawoud B. On the effect of grain size on the kinetics of water vapor
adsorption and desorption into/from loose pellets of FAM-Z02 under a typical
operating condition of adsorption heat pumps. J Chem Eng Jpn 2007;40:

[63] Kim YD, Thu K, Ng KC. Adsorption characteristics of water vapor on ferroa-
http://dx.doi.org/10.1016/j.desal.2014.04.009.

[64] Myat A, Kim Choon N, Thu K, Kim YD. Experimental investigation on the
optimal performance of Zeolite-water adsorption chiller. Appl Energy

[65] Newalkar BL, Jasra RV, Kamath V, Bhat SGT. Sorption of water in alumi-
nophosphate molecular sieve AlPO4-5. Microporous Mesoporous Mater

[66] Thu K, Kim YD, Xi BJ, Ismail A, Ng KC. Thermophysical properties of novel

[67] Shara
ci
tan A, Nemati Mehr SM, Huttema W, Bahrami M. Effects of different
adsorber bed designs on in-situ water uptake rate measurements of AQSOA
FAM-Z02 for vehicle air conditioning applications. Appl Therm Eng 2016;98:
568–74.

formance evaluation of a low-temperature waste heat driven multi-bed
10.1016/S0301-9322(03)00103-4.

[69] Jribi S, Saha BB, Koyama S, Chaikraborty A, Ng KC. Study on activated carbon/
HFO-1234ze(E) based adsorption cooling cycle. Appl Therm Eng 2013;50:

[70] Jribi S, Saha BB, Koyama S, Bentaher H. Modeling and simulation of an acti-
vated carbon—CO2 four bed based adsorption cooling system. Energy Convers

[71] Shara
ci
tan A, Bahrami M. A quasi steady state model for adsorption cooling
systems: automotive applications. In: ASME 2012 6th int. Conf. Energy sus-

[72] Shara
ci
tan A, Dan PC, Huttema W, Bahrami M. Performance analysis of a novel
expansion valve and control valves designed for a waste heat-driven two-

application. John Wiley & Sons; 2014,

[74] Cheppudira Thimmaiah P, Shara
ci
tan A, Huttema W, Bahrami M. Effects of capillary-assisted tubes with different fin geometries on the performance of a low-operating pressure evaporator for adsorption cooling systems. Appl En-

[75] Nilson RH, Tchikanda SW, Griffiths SK, Martinez MJ. Steady evaporating flow

dx.doi.org/10.1007/s10404-007-0172-5.

[77] Lambert MA, Jones BJ. Automotive adsorption air conditioner powered by
09544070AUT0221.