Performance analysis of a novel expansion valve and control valves designed for a waste heat-driven two-adsorber bed adsorption cooling system

Amir Sharafian*, Patric Constantin Dan, Wendell Huttema, Majid Bahrami*
Laboratory for Alternative Energy Conversion (LAEC), School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, Canada V3T 0A3

HIGHLIGHTS
• New ideas for the expansion and control valves of adsorption cooling systems are proposed.
• A two-bed silica gel/CaCl₂-water adsorption cooling system is built to test the new ideas.
• The control valves are 10.5 kg lighter than other available designs in the literature.
• The control valve arrangements result in 50% less parasitic power consumption in one cycle.
• A check valve with cracking pressure of 3.5–7 kPa is proposed for the expansion valve.

ARTICLE INFO
Article history:
Received 8 August 2015
Accepted 28 February 2016
Available online 7 March 2016

Keywords:
Expansion valve
Control valve
Adsorption cooling system
Silica gel/CaCl₂
Vehicle air conditioning

ABSTRACT
Two new ideas for the expansion valve and control valves of an adsorption cooling system (ACS) for vehicle air conditioning applications are suggested to reduce its weight and parasitic power consumption, and simplify its control system. A check valve with cracking pressure of 3.5–7 kPa is proposed for the expansion valve and a combination of low cracking pressure check valves and solenoid valves with an innovative arrangement is proposed for the control valves. These new designs are installed on a two-adsorber bed silica gel/CaCl₂-water ACS and tested under different operating conditions. These designs result in reducing the total mass of the ACS up to 10.5 kg and the parasitic power consumption of the control valves by 50%. The results show that the expansion valve and control valves operate effectively under the heating and cooling fluid inlet temperatures to the adsorber beds of 70–100 °C and 30–40 °C, respectively, the coolant water inlet temperature to the condenser of 30–40 °C, and the chilled water inlet temperature to the evaporator of 15–20 °C. Also, an ACS thermodynamic cycle model is developed and compared against the experimental data for prediction and further improvement of the ACS performance. The results of the numerical modeling show that by increasing the adsorber bed heat transfer coefficient and surface area, the specific cooling power of the system increases up to 6 times.

1. Introduction

Waste heat-driven adsorption cooling systems (ACSs) are potential energy efficient replacements for vapor compression refrigeration cycles (VCRC) in vehicles’ air conditioning (A/C) applications. An ACS utilizes a low grade thermal energy to generate cooling power required in a vehicle. Approximately 70% of the total fuel energy released in an internal combustion engine (ICE) is wasted as heat that is dissipated through the engine coolant and exhaust gas [1]. An ACS can use this wasted heat to provide cooling in vehicles and drastically reduce the vehicle’s fuel consumption and carbon footprint.

An ACS uses an adsorbent–adsorbate working pair, where the adsorbate, such as water or methanol, is adsorbed and desorbed from the surface of the adsorbent, such as zeolite, silica gel, or activated carbon, in a waste heat-driven cycle. Most of these materials are nontoxic, noncorrosive, and inexpensive [2] making ACS a safe and environmentally friendly technology. An ACS operates more quietly than a VCRC and is easier to maintain because its only moving parts are valves [3]. However, current ACS are limited in their usefulness for commercial vehicle applications, specifically lightweight vehicles, because of their bulkiness and heavy weight which are due to the low thermal conductivity of adsorbent materials and the low mass diffusivity of adsorbent–adsorbate pairs. These properties result in a low coefficient of performance (COP = cooling energy/input energy) and low specific cooling power (SCP = cooling energy/(adsorbent mass × cycle time)). In vehicle applications, the
mass of auxiliary systems should be minimized. Therefore, the SCP becomes an important parameter in a mobile ACS design [4].

Sharafian and Bahrami [5] conducted a comprehensive literature review on the feasibility of ACS installation in light-duty vehicles, different ACS thermodynamic cycle modeling, and practical examples of ACS installed in vehicles such as a refrigerated rail car with two-adsorber bed silica gel-sulphur dioxide ACS [6], a locomotive with waste heat-driven single-adsorber bed zeolite 13X-water ACS [7,8], and a fishing boat with waste heat-driven two-adsorber bed consolidated activated carbon/CaCl₂-ammonia ACS for ice production [9–13]. These examples were successful ACS installed in vehicle applications where the weight and footprint of the ACS were not problematic. For light-duty vehicle A/C applications, de Boer et al. [14–17] built and installed a two-adsorber bed silica gel-water ACS with 2-kW cooling power on a compact car, Fiat Grande Punto. In their setup, each adsorber bed was filled with 3 kg of silica gel with the adsorber bed to adsorbent mass ratio (AAMR) of 4.2 kg\text{silica}/kg\text{adsorbent}. The 86 kg total mass of their system exceeded the 35 kg limit set by the car manufacturer [14]. From the data reported in Refs. [14,15], one can conclude that the mass of the two adsorber beds loaded with adsorbent material was 31.2 kg (2 adsorber beds × (3 kg\text{adsorbent} × 4.2 kg\text{silica/kg adsorbent} × 3 kg\text{adsorbent})) which made only 38% of the total mass of the system. The condenser, evaporator, expansion valve, piping, and control valves contributed the remaining 64% of the ACS total mass. This shows that the mass of all components not only adsorber beds became important for vehicle A/C applications. Table 1 shows the details of different waste heat-driven ACS including adsorber bed type, working pairs, and number and type of control valves.

The valves installed on an ACS for vehicle applications should be automated. It can be seen in Table 1 that the best choice for the valves installed between the adsorber beds, and condenser and evaporator are check valves. These valves have no power consumption and operate by the pressure difference between the two sides of the valve. Also, Table 1 indicates that electrically actuated ball valves and solenoid valves are installed on the most of ACS experiments to control the heating and cooling systems automatically. Solenoid valves are lighter than electrically actuated ball valves and have faster response. However, they have higher electricity power consumption than electrically actuated ball valves. Our analysis showed that the power consumption and complexity of control valves have been overlooked in the literature and there is no information or strategy to minimize the parasitic power consumption of the valves.

In ACS stationary applications that used water as the refrigerant, an inverse U-bend tubing was employed as an expansion valve. However, the constant height of the U-bend tubing limited its operating range. For vehicle applications, where the A/C system experiences different ambient temperatures, this type of expansion valves cannot operate effectively. To this end, we proposed a new design for the expansion valve of an ACS to meet the requirements of a well-designed ACS for vehicle applications.
In the present study, two ideas are proposed for the expansion valve and control valves of an ACS for vehicle A/C applications to simplify the control system, and reduce the total mass of the ACS and the parasitic power consumption of the control valves. As a proof-of-concept demonstration, a two-adsorber bed silica gel/CaCl₂ ACS is designed and built to test these ideas. To evaluate the functionality of the expansion and control valves, parametric studies are performed under different operating conditions. An ACS thermodynamic cycle model is also developed and compared against the experimental data for prediction and further improvement of the ACS performance. Finally, additional modifications to improve the performance of the ACA are proposed.

2. ACS thermodynamic cycle

The thermodynamic cycle of an ACS is comprised of two main steps: heating–desorption–condensation and cooling–adsorption–evaporation. With a single adsorber bed, an ACS generates evaporative cooling power intermittently. To produce a continuous cooling power, one must use more than one adsorber bed. Fig. 1a depicts a schematic of a typical two-adsorber bed ACS comprised of two adsorber beds, a condenser, an expansion valve, and an evaporator.

Fig. 1b shows the thermodynamic processes in an ACS which is divided into two subcycles: (i) an adsorbent cycle (on the right side), and (ii) an adsorbate cycle (on the left side). As shown in Fig. 1b, the adsorbent cycle includes four steps: (1) isosteric heating (ih); process 1–2, (2) isenthalpic process in the evaporator and the adsorber bed is opened and the adsorbent evaporates. At the same time, the valve between the adsorber bed and the condenser is closed, and during an isosteric cooling process (step 3′–4), the temperature of the adsorbent is reduced by dissipating the heat of Qₘₙ through a heat sink. In steps 3–4, the adsorbate inside the condenser passes through the expansion valve and enters to the evaporator. During steps 4–1, the adsorbate absorbs the heat of Qₑᵥap from the environment of interest and evaporates. At the same time, the valve between the evaporator and the adsorber bed is opened and the adsorbent adsorbs the vaporous adsorbate through an isobaric adsorption process (step 4′–1) and releases heat of Qₐₐₚ.

3. Experimental study

An ACS with more than 60 different components was designed and built to test the proposed ideas. Fig. 2a–c shows a schematic of the two-adsorber bed waste heat-driven ACS along with photos of the system components. The ACS equipped with four temperature control systems (TCS) to control the adsorption and desorption temperatures in the adsorber beds, and the condensation and evaporation temperatures in the condenser and evaporator, respectively. As shown in Fig. 2a, valves V1–V4 are installed before and after the adsorber beds to control the adsorption and desorption processes, and eight valves (V5–V12) are installed on the TCSs (TCS₁HF and TCS₁CF) to intermittently heat and cool adsorber beds 1 and 2.

Silica gel/CaCl₂ adsorbent material was prepared with chromatography-grade commercial silica gel with irregular-shaped grains (0.5–1.0 mm) and average pore diameter of 5.7 nm (SiliaFlash N60, Silicycle Inc.) with 30% wt. CaCl₂. Two heat exchangers, as shown in Fig. 2d, were designed and built based on the results of Sharafian et al. [83] to be packed with the silica gel/CaCl₂ composite adsorbent. Type T thermocouples (Omega, model #5RTC-TT-T-36-36) with accuracy of 0.75% of reading and pressure transducers (Omega, model #PX309-005AI) with 0–34.5 kPa operating range and ±0.4 kPa accuracy were used to monitor and record the temperature and pressure variations in each component of the ACS over time.

Four check valves, V1–V4, were installed to reduce the weight and electrical power consumption of the ACS, and to simplify its control system. The check valves between the adsorber beds and the condenser, and the adsorber beds and the evaporator must have a low cracking pressure. An ACS which uses water as the refrigerant operates between 1 and 8 kPa, therefore any pressure drop between the adsorber beds and the condenser or the adsorber beds and the evaporator reduces the system performance. In this study, the check valves (Generant, model #DCV-375B-S) have a cracking pressure of less than 250 Pa, have no power consumption, and are durable and inexpensive.

To control the heating and cooling of the adsorber beds, eight solenoid valves, V5–V12, (StcValve, model #2W160-1/2-3-V with 14 W power consumption and #2WO160-1/2-3-V with 30 W power...
consumption) with a maximum operating temperature of 120 °C and a total power consumption of 176 W were installed. The solenoid valve arrangements for the heat transfer fluid header and collector of the ACS are displayed in Fig. 3.

As shown in Fig. 3, solenoid valves V5, V7, V10, and V12 are normally closed and solenoid valves V6, V8, V9, and V11 are normally open. To desorb adsorber bed 1, heating fluid comes from TCSHF, enters the header, passes through valve V6, and goes to adsorber bed 1, as shown in Fig. 3a, and then returns from adsorber bed 1, passes through valve V8, and returns to TCSHF, as shown in Fig. 3b. For the adsorption process in adsorber bed 2, cooling fluid comes from TCSCF, passes through valve V9, and enters adsorber bed 2. Then, it returns from adsorber bed 2, passes through valve V11, and returns to TCSCF. When the solenoid valves are not energized, TCSHF and TCSCF are connected to adsorber beds 1 and 2, respectively. When the solenoid valves are energized, the flow directions of heating and cooling fluids are switched, and TCSHF and TCSCF are connected to adsorber bed 2 and 1, respectively.

![Fig. 2. (a) Schematic of a two-adsorber bed ACS, (b–c) ACS components: 1 – adsorber beds, 2 – condenser, and 3 – evaporator, and (d) custom-built heat exchanger located inside the adsorber beds.](image1)

![Fig. 3. Solenoid valve arrangements in (a) the header and (b) collector of the two-adsorber bed ACS. “□”: normally open, “□□”: normally closed.](image2)
With this design, valves V1–V8 are controlled with only a relay switch, which in turn is controlled automatically using a LabVIEW program, and the power consumption of valves V1–V8 for one cycle reduces by 50%. Also, check valves V1–V4 operate automatically, without power consumption, actuated by the pressure gradients between the adsorber beds, and the condenser and the evaporator. The total mass of the eight solenoid valves and four check valves is about 7 kg (8 × 0.815 kg + 4 × 0.115 kg). If electrically or pneumatically actuated ball valves were used, the total mass of eight valves and four check valves of the same size would be 17.5 kg (8 × 2.130 kg + 4 × 0.115 kg) which is 10.5 kg (2.5 times) heavier than the design in this study.

The expansion valve of a refrigeration system prevents the vaporous refrigerant in the condenser from flowing to the evaporator, and creates a pressure difference between the condenser and evaporator that is set by the refrigerant saturation pressure. Therefore, the expansion valve of an ACS that uses water as the refrigerant (adsorbate) differs from those of designed for conventional VCRCs that use commercial refrigerants such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Among ACS experiments for stationary applications, a reverse U-bend tube was used as the expansion valve such as the one reported in Ref. [84]. The problem associated with a reverse U-bend tube in an ACS that uses water as the refrigerant is its fixed height. To create a pressure drop of 5 kPa between the condenser and evaporator, the height of such a reverse U-bend is about 50 cm which is not practical for light-duty vehicle A/C applications and limits the operating range of the ACS. In this study, to resolve the issue of U-bend tube for vehicle applications and design an expansion valve for a wide range of operating conditions, a check valve (Generant, model #CV-250B-S-1) with a cracking pressure of 3.4–6.9 kPa is proposed.

Fig. 4 shows the positions of the condenser and evaporator, and the expansion valve located between them. The condensed refrigerant (adsorbate) is accumulated at the outlet of the condenser and before the expansion valve. As such, the hydrostatic pressure balance for the fluid between the condenser and evaporator is used to relate \(P_{\text{cond}} \) and \(P_{\text{evap}} \) to the cracking pressure of the check valve \((P_{\text{cracking}}) \):

\[
P_{\text{cond}} - P_{\text{evap}} = \rho g h_{\text{evap}} + \rho g h > P_{\text{cracking}}
\]

Eq. (1) shows that the expansion valve connects the condenser to the evaporator only if the sum of the left-side terms becomes larger than the cracking pressure of the check valve, \(P_{\text{cracking}} \). As such, the term \(\rho g h \) in Eq. (1) created by the accumulation of liquid refrigerant (adsorbate) at the outlet of the condenser guarantees that no vaporous refrigerant passes through the expansion valve. Such a compact expansion valve can effectively operate in a vehicle where operating conditions vary significantly and vibrations are abundant. The other specifications of the designed ACS and the operating conditions are summarized in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Changed values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working pairs</td>
<td>Silica gel/CaCl₂-water</td>
</tr>
<tr>
<td>Mass of adsorbent per adsorber bed (kg)</td>
<td>1.15</td>
</tr>
<tr>
<td>Metal mass of adsorbent bed (kg)</td>
<td>2.8</td>
</tr>
<tr>
<td>Adsorber bed heat transfer surface area, (A_{\text{bed}}) (m²)</td>
<td>0.235</td>
</tr>
<tr>
<td>Adsorber bed heat transfer coefficient, (U_{\text{bed}}) (W/m²K)</td>
<td>20.0</td>
</tr>
<tr>
<td>Heating fluid mass flow rate to adsorber bed (kg/s)</td>
<td>0.058 (4.1 L/min of silicone oil)</td>
</tr>
<tr>
<td>Cooling fluid mass flow rate to adsorber bed (kg/s)</td>
<td>0.062 (4.1 L/min of silicone oil)</td>
</tr>
<tr>
<td>Heat capacity of silicone oil (kJ/kgK)</td>
<td>1.8</td>
</tr>
<tr>
<td>Metal mass of condenser (kg)</td>
<td>1.9</td>
</tr>
<tr>
<td>Condenser heat transfer surface area, (A_{\text{cond}}) (m²)</td>
<td>0.1444</td>
</tr>
<tr>
<td>Condenser heat transfer coefficient, (U_{\text{cond}}) (W/m²K)</td>
<td>250</td>
</tr>
<tr>
<td>Coolant water mass flow rate to condenser (kg/s)</td>
<td>0.036 (2.16 L/min of water)</td>
</tr>
<tr>
<td>Metal mass of evaporator (kg)</td>
<td>1.9</td>
</tr>
<tr>
<td>Evaporator heat transfer surface area, (A_{\text{evap}}) (m²)</td>
<td>0.072</td>
</tr>
<tr>
<td>Evaporator heat transfer coefficient, (U_{\text{evap}}) (W/m²K)</td>
<td>250</td>
</tr>
<tr>
<td>Chilled water mass flow rate to evaporator (kg/s)</td>
<td>0.02 (1.2 L/min of water)</td>
</tr>
<tr>
<td>Heating fluid inlet temperature (°C)</td>
<td>90</td>
</tr>
<tr>
<td>Cooling fluid inlet temperature (°C)</td>
<td>30</td>
</tr>
<tr>
<td>Coolant fluid inlet temperature (°C)</td>
<td>30</td>
</tr>
<tr>
<td>Chilled water inlet temperature (°C)</td>
<td>15</td>
</tr>
</tbody>
</table>

4. Numerical modeling

A dynamic lumped-body model was developed for the ACS thermodynamic cycle to predict the performance of the system and further improve the design. The energy balance on the adsorber bed during the isosteric heating (process 1–2 in Fig. 1b) is expressed as follows:

\[
m_{\text{adsorbent}} \left[C_{\text{adsorbent}} \frac{dT_{\text{adsorbent}}}{dt} + \rho h \omega \right] = \rho \omega \left(\rho \omega \right) \Delta T_{\text{LM,bed}}
\]

where \(m_{\text{adsorbent}} \) is the mass of dry adsorbent and \(\Delta T_{\text{LM,bed}} \) is the AAMR. In Eq. (2), \(T_{\text{adsorbent}} \) is the adsorbent particles temperature and \(\omega \) is the maximum adsorbate uptake at the adsorbent temperature and evaporator pressure, see Fig. 1b. \(U_{\text{bed}} \) and \(A_{\text{bed}} \) are the overall heat transfer coefficient and heat transfer surface area of the adsorber bed, respectively. \(\Delta T_{\text{LM,bed}} \) defines the adsorber bed log mean temperature difference (LMTD) between the adsorbent particles and heating fluid:

\[
\Delta T_{\text{LM,bed}} = \frac{T_{\text{in}} - T_{\text{out}}}{\ln \left(\frac{T_{\text{in}} + T_{\text{out}}}{2} \right)}
\]

where \(T_{\text{in}} \) and \(T_{\text{out}} \) are the heating fluid inlet and outlet temperatures. Eq. (4) gives the heating fluid outlet temperature during the isosteric heating process:

\[
m_{\text{bf}} C_{\text{bf}} (T_{\text{out}} - T_{\text{in}}) = U_{\text{bed}} A_{\text{bed}} \Delta T_{\text{LM,bed}}
\]

where \(m_{\text{bf}} \) is the heating fluid mass flow rate. During the isobaric desorption (process 2–3' in Fig. 1b), the energy balance on the
adsorber bed and the adsorbate uptake rate by the adsorbent particles are expressed as follows:

\[
\frac{m_{\text{adsorbent}}}{m_{\text{adsorbent}}} \left(C_{\text{adsorbent}} + C_{p,\text{liq. adsorbate}} \omega + C_{\text{bed}} \frac{m_{\text{bed}}}{m_{\text{adsorbent}}} \right) \frac{dT_{\text{adsorbent}}}{dt} = \frac{m_{\text{adsorbent}}}{m_{\text{adsorbent}}} \Delta T_{\text{adsorbent}}
\]

or

\[
\frac{m_{\text{adsorbent}}}{m_{\text{adsorbent}}} \left(C_{\text{adsorbent}} + C_{p,\text{liq. adsorbate}} \omega + C_{\text{bed}} \frac{m_{\text{bed}}}{m_{\text{adsorbent}}} \right) \frac{dT_{\text{adsorbent}}}{dt} = \frac{m_{\text{adsorbent}}}{m_{\text{adsorbent}}} \Delta T_{\text{adsorbent}}
\]

(5)

The first and second terms in the left-hand side of Eq. (5) represent the sensible and latent heats, respectively. Eq. (6) gives the adsorbate uptake rate.

\[
\omega = \frac{\omega_0 K_{s,\text{exp}}}{1 + \omega_0 K_{s,\text{exp}} \frac{h_{\text{adsorbate}}}{R_{\text{adsorbate}}} \frac{h_{\text{adsorbate}}}{T_{\text{adsorbent}}}}
\]

(7)

where \(P \), \(M_{\text{adsorbent}} \) and \(\Delta h_{\text{ads}} \) are the operating pressure in mbar, the molar mass of adsorbate, and the enthalpy of adsorption, respectively. For silica gel/\(\text{CaCl}_2 \)/water, \(\Delta h_{\text{ads}} \), \(K_{s,\text{exp}} \), and \(n \) equal to 2760 kJ/kg, 2.0 \times 10^{-3} \text{ mbar}^\text{−1}, 0.8 \text{ kg/kg}, and 1.1, respectively [85,86]. The energy balance on the condenser is expressed by Eqs. (8)–(10):

\[
-m_{\text{cond}} \frac{\partial \omega}{\partial t} \left(\frac{h_{\text{adsorbate}}}{T_{\text{cond}} - T_{\text{cond}}} \right) + \frac{1}{\rho_{\text{gas}}} \frac{m_{\text{bed}}}{m_{\text{adsorbent}}} \Delta T_{\text{cond}} = \frac{m_{\text{bed}}}{m_{\text{adsorbent}}} \left(\frac{1}{\rho_{\text{gas}}} \frac{m_{\text{bed}}}{m_{\text{adsorbent}}} \right) \frac{dT_{\text{cond}}}{dt}
\]

(8)

\[
\Delta T_{\text{cond}} = \frac{T_{\text{cond}} - T_{\text{cond}}}{\ln \left(\frac{T_{\text{cond}} - T_{\text{cond}}}{T_{\text{cond}} - T_{\text{cond}}} \right)}
\]

(9)

\[
\omega = \frac{m_{\text{bed}}}{m_{\text{adsorbent}}} \frac{dT_{\text{cond}}}{dt}
\]

(10)

where \(T_{\text{cond}} \) and \(T_{\text{cond}} \) are the coolant fluid inlet and outlet temperatures to the condenser and \(h_{\text{ads}} \) is the enthalpy of vaporization during the condensation process. The set of Eqs. (3)–(10) should be solved simultaneously to find the adsorbent particles temperature, adsorbate uptake rate, heating fluid outlet temperature, and adsorber bed LMTD, as well as the condenser and coolant fluid outlet temperatures during the isobaric sorption and condensation processes. The amounts of heat transfer to the adsorber bed from the heat source during the isosteric heating and isobaric desorption processes, and the heat removal from the condenser during the condensation process are calculated as follows:

\[
\dot{q}_{\text{heating}} = \dot{m}_{\text{heat}} C_{p,\text{heat}} \frac{\text{step}(1-2) \cdot \text{step}(2-3)}{\text{step}(1-2) \cdot \text{step}(2-3)}
\]

(11)

\[
\dot{q}_{\text{cond}} = \dot{m}_{\text{cond}} C_{p,\text{cond}} (T_{\text{cond}}) - \dot{q}_{\text{cond}} dt
\]

(12)

Eqs. (13)–(15) express the energy balance during the isosteric cooling (process 3–4 in Fig. 1b). This process is similar to the isosteric heating process except the cooling fluid replaces the heating fluid.

\[
\dot{q}_{\text{cond}} = \dot{m}_{\text{cond}} C_{p,\text{cond}} (T_{\text{cond}}) - \dot{q}_{\text{cond}} dt
\]

(13)

\[
\Delta T_{\text{cond}} = \frac{T_{\text{cond}} - T_{\text{cond}}}{\ln \left(\frac{T_{\text{cond}} - T_{\text{cond}}}{T_{\text{cond}} - T_{\text{cond}}} \right)}
\]

(14)

\[
\dot{m}_{\text{cond}} C_{p,\text{cond}} (T_{\text{cond}}) = \dot{q}_{\text{cond}} dt
\]

(15)

where \(\omega_{\text{des}} \) is the minimum equilibrium adsorbate uptake in the ACS thermodynamic cycle at the end of the isobaric desorption process and is calculated at the adsorber bed temperature and condenser pressure, see Fig. 1b. The energy balance on the adsorber bed during the isobaric sorption (process 4'–1 in Fig. 1b) is expressed as follows:

\[
\dot{q}_{\text{des}} = \dot{m}_{\text{des}} C_{p,\text{des}} \frac{\text{step}(4-5) \cdot \text{step}(5-6)}{\text{step}(4-5) \cdot \text{step}(5-6)}
\]

(16)

The governing equations during the evaporation process are summarized in Eqs. (17)–(19):

\[
\dot{q}_{\text{evap}} = \dot{m}_{\text{evap}} C_{p,\text{evap}} \frac{\text{step}(6-7) \cdot \text{step}(7-8)}{\text{step}(6-7) \cdot \text{step}(7-8)}
\]

(17)

\[
\dot{q}_{\text{evap}} = \dot{m}_{\text{evap}} C_{p,\text{evap}} \frac{\text{step}(6-7) \cdot \text{step}(7-8)}{\text{step}(6-7) \cdot \text{step}(7-8)}
\]

(18)

\[
\dot{m}_{\text{evap}} C_{p,\text{evap}} (T_{\text{evap}}) = \dot{q}_{\text{evap}} dt
\]

(19)

Eqs. (6) and (14)–(19) should be solved simultaneously to find the adsorbent particles temperature and chilled water outlet temperature during the isobaric sorption and evaporation processes, respectively. The heat removal from the adsorber bed during the isosteric cooling and isobaric desorption processes as well as heat transfer to the evaporator during the evaporation process are calculated as follows:

\[
\dot{q}_{\text{cooling}} = \dot{m}_{\text{cond}} C_{p,\text{cond}} \frac{\text{step}(6-7) \cdot \text{step}(7-8)}{\text{step}(6-7) \cdot \text{step}(7-8)}
\]

(20)

\[
\dot{q}_{\text{evap}} = \dot{m}_{\text{evap}} C_{p,\text{evap}} \frac{\text{step}(6-7) \cdot \text{step}(7-8)}{\text{step}(6-7) \cdot \text{step}(7-8)}
\]

(21)

Eqs. (22)–(25) give the total amount of heat transfer to/removal from the adsorber beds, condenser and evaporator:

\[
\dot{q}_{\text{heating}} = \int \dot{q}_{\text{heating}} dt
\]

(22)

\[
\dot{q}_{\text{cond}} = \int \dot{q}_{\text{cond}} dt
\]

(23)

\[
\dot{q}_{\text{cond}} = \int \dot{q}_{\text{cond}} dt
\]

(24)

\[
\dot{q}_{\text{evap}} = \int \dot{q}_{\text{evap}} dt
\]

(25)

Accordingly, the COP and SCP of the ACS during one cycle are calculated:
\[\text{COP} = \frac{Q_{\text{evap}}}{Q_{\text{total heating}}} \]

(26)

\[\text{SCP} = \frac{Q_{\text{evap}}}{m_{\text{adsorbent}} \tau_{\text{cycle}}} \quad (W/kg) \]

(27)

where \(\tau_{\text{cycle}} \) in Eq. (27) is the cycle time.

To solve the set of differential equations simultaneously, the Runge–Kutta–Fehlberg method (RKF45) was adopted because the governing equations in the ACS thermodynamic modeling were only a function of time. In the in-house code, the marching time step was set at 0.1 s and the relative error difference between two consequent iterations at each time step was set at \(10^{-9} \). Also, the absolute error difference between the results at the end of two consequent cycles was set at \(10^{-3} \).

5. Results and discussion

5.1. Base-case operating condition

Fig. 5 shows the performance of the ACS with a new expansion valve and control valves at the cycle time of 30 min and the base-case operating conditions summarized in Table 2. Fig. 5a shows the inlet and outlet temperatures of the heating and cooling fluids before and after adsorber beds 1 and 2 as they are alternately heated and cooled for desorption and adsorption, respectively. Fig. 5 shows that control valves V5–V12 can repetitively direct the heating and cooling fluids to the adsorber beds. The pressures of the adsorber beds, \(P_{\text{bed,1}} \) and \(P_{\text{bed,2}} \), corresponding to adsorption and desorption are shown in Fig. 5b. It can be seen in Fig. 5b that the pressures of the adsorber beds vary between the condenser and evaporator pressures, \(P_{\text{cond}} \) and \(P_{\text{evap}} \), where condensation and evaporation processes occur. Also, Fig. 5b indicates that whenever one of the adsorber beds undergoes the adsorption process, it is automatically connected to the evaporator via valves V1 or V3 and because of refrigerant evaporation in the evaporator, the chilled water outlet temperature, \(T_{\text{chilled, o}} \), reduces. Fig. 5b also indicates that the expansion valve can provide the required pressure drop between the condenser and evaporator under the base-case operating conditions.

5.2. Parametric study

In this section, the performance of the ACS is studied under different operating conditions. In order to verify the numerical modeling, the SCP of ACS calculated from the numerical modeling is compared against that of calculated from the experimental data. Fig. 6 shows the effect of cycle time on the SCP of the ACS. As shown in Fig. 6, by increasing the cycle time from 20 to 30 min, the SCP increases by 177% from 3.3 to 9.15 W/kg. However, the SCP of ACS gradually reduces after the cycle time of 30 min because the adsorbate uptake capability of adsorbent particles reduces by increasing the cycle time. Fig. 6 shows that the model is capable of predicting the SCP of ACS with a good agreement for cycle times less than 30 min which are of the interest of vehicle applications [87].

Fig. 7 shows the effects of the heating and cooling fluid inlet temperatures on the SCP of the ACS. As shown in Fig. 7a, increasing the heating fluid inlet temperature to the adsorber beds from 70 to 100 °C increases the SCP from 0.7 to 14.8 W/kg. Increasing the temperature of the heating fluid to the adsorber beds during desorption causes faster heat transfer to the adsorbent material and, consequently, the rate of desorption of the adsorbate from the adsorbent material increases, and more adsorbate is desorbed. Accordingly, the drier adsorbent material adsorbs more adsorbate from the evaporator during the adsorption process. Therefore, higher cooling power...
(or SCP) is generated. In contrast, Fig. 7b shows that by increasing the cooling fluid inlet temperature from 30 to 40 °C, the SCP of the ACS reduces from 9.2 to 4.0 W/kg because higher adsorbent temperature during the adsorption process reduces the adsorbate uptake capacity of the adsorbent. Fig. 7 also depicts that the numerical modeling predicts the SCP of the ACS with good accuracy.

The effects of the coolant fluid inlet temperature circulated in the condenser on the SCP of ACS are shown in Fig. 8a. The SCP of the ACS decreases when the coolant fluid inlet temperature increases because of the increase in the condenser pressure and, as a result, lower amount of adsorbate condenses inside the condenser and adsorbent material dries less. Therefore, within a constant cycle time, lower adsorbate is desorbed from the adsorbent material and the adsorption capability of the adsorbent material during the adsorption process reduces. Fig. 8b demonstrates the effects of the chilled water inlet temperature flowing through the evaporator on the SCP of the ACS. As shown in Fig. 8b, by increasing the chilled water inlet temperature from 15 to 20 °C, the SCP of the ACS increases from 9.2 to 14.2 W/kg, i.e., a 54% increase, because the adsorbate uptake capability of the adsorbent material increases with the increasing the evaporator pressure during the adsorption process. Fig. 8 also displays that the numerical modeling is capable of predicting the SCP of the ACS with good accuracy.

5.3. Further improvement of the ACS

The parametric study indicates that the ideas proposed for the expansion and control valves of a waste heat-driven ACS can successfully operate under different operating conditions corresponding to what a light-duty vehicle A/C system experiences. However, the SCP of the designed ACS is not high enough because of low overall heat transfer conductance, U_{bed}, of the adsorber beds and, consequently, low heat transfer rate to the adsorbent material. Also, the evaporator and condenser designs should be changed to increase the evaporation and condensation rate. Using the verified numerical modeling, as an example, one can study the effects of an
adsorber bed with higher heat transfer rate. To this end, reducing the fin spacing of the adsorber bed to increase the overall heat transfer coefficient, U_{bed}, and increasing the adsorber bed heat transfer surface area, A_{bed}, are practical solutions. Fig. 9 shows the SCP of the ACS with improved overall heat transfer conductance versus different cycle times. As shown in Fig. 9, increasing U_{bed} from 20 to 70 W/m²K, and A_{bed} from 0.235 to 2.8 m² result in the SCP of 83–96 W/kg within the cycle time 10–40 min.

6. Conclusion

In this study, new designs for the expansion valve and control valves of a waste heat-driven two-adsorber bed ACS were proposed and tested on a two-adsorber bed silica gel/CaCl₂-water ACS. The performance of the system was experimentally investigated under different operating conditions. The results showed that the expansion valve and control valves operated effectively in the system while the mass of the system was reduced by 10.5 kg and electricity power consumption of control valves was reduced by 50%. Also, a numerical model was developed and compared against the experimental data. The numerical results showed a good agreement with the experimental results under a wide range of operating conditions. The validated numerical model showed that by increasing the adsorber bed overall heat transfer coefficient and heat transfer surface area, the SCP of the ACS could be improved up to 6 times.

Acknowledgements

The first author thanks the LAEC members, Dr. Claire McCague, postdoctoral fellow, and Ms. Cecilia Berlanga, co-op student, for preperation of the manuscript. The authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Automotive Partnership Canada Grant No. APCRJ 401826-10.

Nomenclature

- A: Heat transfer surface area [m²]
- A/C: Air conditioning
- ACS: Adsorption cooling system
- $AAMR$: Adsorption bed to adsorbent mass ratio [kgₙₐ₉tₙ/kgₙₖₖₖₙₖ dry adsorbent]
- c: Heat capacity of solid materials [J/kg·K]
- c_p: Heat capacity at constant pressure [J/kg·K]
- D_s: Solid-side mass diffusivity [m²/s]
- D_{p0}: Pre-exponential constant [m²/s]
- E_a: Activation energy [J/mol]
- ΔF_a: Enthalpy of adsorption [J/kg]
- ΔH_f: Log mean temperature difference [K]
- h_k: Enthalpy of vaporization [J/kg]
- ICE: Internal combustion engine
- M: Molar mass [kg/mol]
- m: Mass [kg]
- m: Mass flow rate [kg/s]
- P: Pressure [mbar]
- Q_{total}: Total heat transfer [J]
- q: Heat transfer rate [W]
- R_p: Average radius of adsorbent particles [m]
- R_u: Universal gas constant [J/mol·K]
- SCP: Specific cooling power [W/kg dry adsorbent]
- T: Temperature [K]
- t: Time [s]
- τ_{cycle}: Cycle time [s]
- U: Overall heat transfer coefficient [W/m²K]
- $VCRC$: Vapor compression refrigeration cycle

Subscripts

- adsorbate: Adsorbate
- adsorbent: Adsorbent particles
- bed: Adsorber bed
- chilled: Chilled water
- cond: Condenser
- coolant: Coolant fluid
- cooling: Cooling process
- eq: Equilibrium state
- evap: Evaporator
- heating: Heating process
- hf: Heating fluid
- i: In
- $liq.$: Liquid phase
- max: Maximum
- min: Minimum
- out: Out
- sat: Saturation
- vaporous: Vaporous phase
- vaporous: Vaporous phase

References

and those of the host silica gel, Int. J. Refrig. 30 (2007) 68–75, doi:10.1016/j.ijrefrig.2006.05.003.

