Compressive behaviour of thin catalyst layers. Part II - Model development and validation

Ali Malekian a, Sina Salari a, Mickey Tam b, Ned Djilali c, Majid Bahrami a, *

a Laboratory for Alternative Energy Conversion (LAEC), School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada
b Automotive Fuel Cell Cooperation, 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8, Canada
c Department of Mechanical Engineering and Institute for Integrated Energy Systems, University of Victoria, Victoria V8P 5C2, BC, Canada

Article info
Article history:
Received 16 November 2018
Received in revised form 8 April 2019
Accepted 15 April 2019
Available online 4 June 2019

Keywords:
Catalyst layer
Compression
Analytical modeling
Deformation
Stress strain
Module of elasticity

Abstract
In the second part of this study, a new analytical model for catalyst layers (CLs) compression is developed using effective medium theory, using a geometric "unit cell", to accurately predict the deformation of CLs under compression. Based on SEM images, a representative unit cell is proposed using microstructural properties of CL such as porosity, pore size distribution, and ionomer to carbon weight ratio (I/C) to simplify the random complex structure of CLs. Deformation of the ionomer film that covers carbon agglomerates is found to be the main deformation compared to other mechanisms such as Hertzian compliance of carbon particles and deformation of agglomerates. The present model is validated using the experimental results obtained for five different CL designs, presented in Part 1 of this study. The analytical model is capable of predicting the non-linear compressive behaviour of CLs with a reasonable accuracy since a continuous change of CL porosity is considered in the model. The proposed geometrical model has also been used for other properties of CL in our group and successfully predicted thermal conductivity and gas diffusivity of CL.

© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Membrane Electrode Assembly (MEA) in Proton Exchange Membrane (PEM) fuel cells consist of a membrane, two catalyst layers (CLs), and two gas diffusion layers (GDLs) in the simplest form. All these layers tolerate numerous cyclic temperature, humidity, and pressure changes during the operation of PEM fuel cell which cause hygrothermal stresses in each layer [1]. The performance, life-time, and efficiency of fuel cell are affected by the change in properties of the MEA layers because of hygrothermal stresses [2–4]. Hence, mechanical properties of each layer should be modeled and validated experimentally to be able to predict the behaviour under different operating and loading conditions and over life time. CLs are one of the most important layers in PEM fuel cells since the main electrochemical reaction producing water and heat occurs in them. The first part of this study has focused on CL compressive behaviour experimentally [52]. In the second part, the focus is to analytically model behaviour of CL under uniaxial mechanical pressure to predict CL deformation.
The proposed geometrical model simplifies the random and complicated microstructure of porous medium using unit cell approach. In this approach, a unit cell is considered as a geometrical representative of the entire medium. This method has been used in previous studies in Dr. Bahrami’s group [12–15] and other publications [16–18]. It is assumed that the unit cell is repeated throughout the medium and contains all salient properties of the CL. Hence, the key factor in this approach is to develop a simple yet comprehensive geometrical model that can represent the microstructure of catalyst layer efficiently. The geometrical model adopted in this paper has been successfully used to accurately predict other properties of CLs, including: thermal conductivity [14] and gas diffusivity [15,19]. This versatility and simplicity attest to the capability of this powerful modeling platform and demonstrate its potential for further development and application for thin porous layers in other engineering applications.
Microstructure of CL

Catalyst layer is a complex random porous medium that consists of carbon particles, ionomer, and Pt particles supported on the carbon particles. Agglomerate is a cluster of carbon particles that are covered with ionomer film and also, they are connected throughout the CL medium. The pores of catalyst layer are often divided into two broad categories: i) primary pores (less than ~20 nm), which are between carbon particles within agglomerates \[20,21\]; and ii) secondary pores (20–300 nm), which are between the agglomerates and are usually bigger than primary pores. Fig. 1 shows the primary and secondary pores in a typical CL. In the present model, carbon particles are considered to be spherical, consistent with the literature \[22–24\]. The carbon particles bond and form the agglomerates. The properties of agglomerates such as the number of carbon particles in an agglomerate, their arrangement, and size are dependent on the fabrication process as well as the supplier \[25\]. In this model, the structure of CL is considered in two scales: i) structure within the agglomerate which consists of carbon particles with Pt particles on them; ii) structure of agglomerates that are connected together with secondary pores between them.

Geometrical model of agglomerates

There are generally two geometrical models in the literature for modeling CL properties: i) agglomerates are considered as spheres without overlap, i.e. touching at one point \[27–32\], ii) spheres with overlap which is our group’s approach \[14,15,19,33,34\]. The papers from our group show that the models with overlap spheres have better agreement with experimental data for CL properties such as thermal conductivity and gas diffusivity. Also, CL structure modeled using spherical agglomerates without overlap have overestimated active surface area and gas diffusivity compared to the reconstructed CL geometry from FIB-SEM images \[35\]. Hence, overlapping spherical agglomerates are considered for the mechanical modeling in this study. Also, it is assumed that ionomer covers the agglomerates partially and blocks a portion of the primary pores within the agglomerates. The spherical agglomerates are considered to have a simple cubic (SC) arrangement to make it possible for modeling. A schematic of the proposed geometry is shown in Fig. 2.

Geometrical calculation for unit cell

As it is drawn in Figs. 2 and 3, void volume between the overlapping agglomerates are the secondary pores of CL, whereas, the primary pores are the void volume between the spherical carbon particles. The overlapping parameter, \(\xi\), is defined as the ratio of radius of agglomerate to radius of aggregate (i.e. \(\xi = r/a\)), which is related to the overlap angle, \(\phi\). Also, Fig. 3b shows the ionomer shell that covers and holds the agglomerate in the present unit cell geometry.

Fig. 1 – Primary and secondary pores in a CL [26].
More details of the calculations can be found in other papers published by Salari et al. [15, 19].

$$\varepsilon = \frac{r}{a}$$ \hspace{1cm} \hspace{1cm} (1)

$$\varphi = \cos^{-1}(1/\varepsilon)$$ \hspace{1cm} \hspace{1cm} (2)

By considering FCC arrangement for carbon particles inside the agglomerates, the following equations for agglomerate porosity ($\varepsilon_{\text{agglomerate}}$), volume of agglomerates ($V_{\text{agglomerate}}$), porosity of catalyst layer (ε_{CL}) and overlapping parameter (ξ) can be written:

$$\varepsilon_{\text{C-Pt}} = \frac{\rho_{\text{Pt}}}{\rho_{\text{Pt}} + \rho_{\text{C}}}$$ \hspace{1cm} \hspace{1cm} (3)

$$\varepsilon_{\text{agglomerate}} = \frac{\rho_{\text{Pt}} \rho_{\text{C-Pt}} (1 - \varepsilon_{\text{FCC}}) + \rho_{\text{C}} (\rho_{\text{Pt}} + \rho_{\text{C}} \rho_{\text{Pt}}) \varepsilon_{\text{FCC}}}{\rho_{\text{Pt}} (\rho_{\text{Pt}} + \rho_{\text{C}} \rho_{\text{Pt}}) + \rho_{\text{Pt}} \rho_{\text{C}} \rho_{\text{Pt}} (1 - \varepsilon_{\text{FCC}})}$$ \hspace{1cm} \hspace{1cm} (4)

$$\varepsilon_{\text{CL}} = 1 - \frac{V_{\text{agglomerate}} (1 - \varepsilon_{\text{agglomerate}})}{8a^2}$$ \hspace{1cm} \hspace{1cm} (5)

$$V_{\text{agglomerate}} = V_{\text{sphere}} - 6V_{\text{overlap}} = \frac{4}{3}\pi a^3 (4.5x^2 - 2x^3 - 1.5)$$ \hspace{1cm} \hspace{1cm} (6)

$$\varepsilon_{\text{CL}} = 1 - \frac{\pi (1 - \varepsilon_{\text{agglomerate}}) (4.5x^2 - 2x^3 - 1.5)}{6}$$ \hspace{1cm} \hspace{1cm} (7)

$$\xi = \frac{3}{4} + \frac{9}{2\left(4\sqrt{16\psi^2 - 6\psi - 45} - 16\psi + 3\right)^{1/2}}$$ \hspace{1cm} \hspace{1cm} (8)

$$\psi = \frac{6(1 - \varepsilon_{\text{CL}})}{\pi (1 - \varepsilon_{\text{agglomerate}})}$$ \hspace{1cm} \hspace{1cm} (9)

where $V_{\text{C-Pt}}$ is the total volume of carbon and platinum particles in the agglomerates including the pores inside carbon particle, $\varepsilon_{\text{C-Pt}}$ is porosity of carbon and platinum particles combined, ρ_{Pt}, ρ_{C} are the densities of ionomer, platinum and carbon particles, respectively, ω_{Pt} and ω_{Pt} is the weight ratio of ionomer to carbon and platinum to carbon in CL, respectively, ε_{C} is the porosity of carbon support particles which is 0.29 as suggested by Voet and Aboytes [38], ε_{FCC} is the agglomerate porosity, $\varepsilon_{\text{agglomerate}}$ is the porosity of the proposed unit cell representing CL, ψ is a dimensionless parameter used to simplify Eq. (8). V_{sphere} and V_{overlap} is the volume of the sphere and one overlap at a side of sphere, respectively, as shown in Fig. 3.

As Bahrami et al. [39] suggested, an equivalent radius can be obtained from square root of the area (Eq. (11)) which is the area of the secondary pore (Eq. (10)) shown in Fig. 2. Using the
proposed geometry, one can find an equivalent pore radius for secondary pores between agglomerates as a function of size of unit cell (combining Eqs. (11) & (10). Therefore, the unit cell size (i.e. a) can be found using Eq. (12) for different pore sizes obtained from PSD, which means unit cells in the simplified geometry have different sizes which is dependent on the sizes and volume percentage of pores in CL.

\[r_{\text{pore}} = 0.5 \sqrt{A_{\text{ip}}} \]

\[A_{\text{ip}} = 4a^2 - A_{\text{agglomerate}} = 4a^2 (1 - \tan \phi - (\pi - 4\phi))^{2} \]

\[a = \frac{r_{\text{pore}}}{\sqrt{1 - \tan \phi - (\xi - \phi)^2}} \]

where \(\xi \) can be found from Eq. (8) and \(\phi \) can be found using Eq. (2), \(A_{\text{ip}} \) is area of the secondary pore, and \(r_{\text{pore}} \) is the radius of the pore. Knowing the unit cell geometry, one can find an average thickness of ionomer that covers the agglomerate using the following equations:

\[V_{\text{carbon}} = V_{\text{agglomerate}} (1 - \varepsilon_{\text{FCC}}) (1 - \varepsilon_{\text{C-HI}}) \]

\[V_{\text{ionomer}} = V_{\text{carbon}} \beta_{n} \rho_{c} \]

\[t_{\text{ionomer}} = \frac{V_{\text{ionomer}}}{A_{\text{agglomerate}}} \]

\[A_{\text{agglomerate}} = 4\pi r^2 - 6 \times 2\pi (r - a) \]

where \(A_{\text{agglomerate}} \) is the total area covered by ionomer which is the area around the agglomerates, and \(t_{\text{ionomer}} \) is the thickness of ionomer covering agglomerates. Using Eqs. (8), (10), and (15), one can build the geometrical model as shown in Figs. 2 and 3. Clearly, unit cell size has a distribution as the PSD measurements is used in this model.

Mechanical compression model

Fig. 3 shows a schematic of the proposed unit cell geometrical model used in this study. After developing an effective medium model for CL, its deformation due to mechanical pressure is obtained. Having the deformation of each unit cell, one can calculate the thickness change of the CL. To find the deformation of each unit cell, the following equations are used to find the applied force on each of them.

\[F_{\text{tot}} = P A_{\text{CL}} \]

\[F = \frac{F_{\text{tot}}}{N_{\text{unit cell}}} \]

where \(F_{\text{tot}} \) is the total force acting on CL, \(F \) is the force acting on each unit cell, \(N_{\text{unit cell}} \) is the total number of unit cells in one layer, \(P \) is the pressure applied on the sample, and \(A_{\text{CL}} \) is the total (or nominal) surface area of CL sample under compression. The applied force is transferred through the ionomer to the particles inside the agglomerate, so particles are deformed and transfer the pressure to the ionomer. The applied force also changes the shape of the ionomer shell and the arrangement of particles inside agglomerate. There are different deformation modes are considered for each unit cell in this work: i) deformation due to Hertzian contact of carbon particles or compliance, ii) deformation of agglomerates as a packed bed of carbon particles (FCC arrangement), iii) deformation of ionomer shell, i.e. the spherical shell, shown in Fig. 3b.

Deformation due to Hertzian contact between carbon particles inside agglomerates

As described earlier, the applied force on the unit cell is transferred to the carbon particles within the agglomerates. The carbon particles deform which results in a compliance of the spherical particles. This deformation is because of the contact between the particles and can be calculated using Hertzian theory [40]. Considering the arrangement of carbon particles to be FCC, one can find the deformation using Eq. (19).

\[d_{\text{FCC}} = \frac{\sqrt{6}}{3} \left(\frac{F^2}{16E_{c}R_{c}} \right)^{1/3} \]

where \(d_{\text{FCC}} \) is the deformation of particles in FCC arrangements, \(F \) is the applied force on each agglomerate which is found based on the applied pressure, \(R_{c} \) is the radius of the carbon particles, and \(E_{c} \) is the effective Young’s modulus of the contact and can be calculated using \(E_{c} = \left(\frac{1-n^{2}}{E_{1}} + \frac{1-n^{2}}{E_{2}} \right) \).

Deformation of agglomerates

Other than the deformation of each particle in the agglomerate, the entire agglomerate can also deform which can be envisioned as a packed bed of spherical particles, contained within the ionomer film, Fig. 3b. The applied force changes the shape of agglomerates from sphere to an oval as schematically shown (exaggerated) in Fig. 4. The deformation of the agglomerate as a packed bed of spheres with an applied force on its top has been reported by Walton [41]. Eq. (20) shows the deformation of a random packing of spheres in which \(B \) depends on the material of the spheres inside the packing (i.e. carbon particles) and can be found from Eq. (21), \(F \) is the applied force on top of the packing, \(\varepsilon_{\text{arr}} \) is the porosity of the packing (i.e. \(\varepsilon_{\text{arr}} = 0.26 \) for FCC arrangement), and \(n \) is the average number of contacts per spheres in the packed bed.

\[d = \left[\frac{3\pi^{2} BF}{(1 - \varepsilon_{\text{arr}})n} \right]^{2/3} \]

\[B = \frac{1}{4\pi} \left(\frac{1}{\mu} + \frac{1}{\beta + \mu} \right); \quad \mu = \frac{E}{2(1 + \nu)}; \quad \beta = \frac{E\nu}{(1 + \nu)(1 - 2\nu)} \]

Deformation of ionomer shell

The applied force on the unit cell causes the ionomer shell to deform as well. Since each agglomerate is in contact with the one above it, the force applied to each of them is a point load from the top. Hence, the ionomer shell shown in Fig. 3b is subjected to a point force from the top. In this deformation mode, the carbon particles can move and slide freely on each
other, however, because they cannot penetrate in other particles, one can consider that they act as a fluid inside the spherical shell and by increasing the force on top, the internal pressure increases and do not let the ionomer shell to deform at the same rate. Since the size of carbon particles are small and there are so many of them inside the shell, it can be assumed that an almost “hydrostatic” pressure acting inside the shell. In other words, ionomer shell can be considered as a hollow spherical shell filled with fluid with a point load on top.

It is found that the overlapping parameter, ξ, is close to one which indicates that the size of the side holes compared to the shell diameter are small, hence the ionomer shell (Fig. 5a) can be considered as a whole spherical thin shell (Fig. 5b) which simplifies the deformation calculations as well. Fig. 5c shows the simplified geometry of ionomer shell as a spherical shell and its deformation under a point load. Koiter [42] considered a non-shallow hollow spherical shell loaded at vertex in spherical coordinates and found the normal deflection at the vertex, i.e. Eqs. (22) and (23). Also, Taber [43] considered a fluid-filled spherical shell under a point load, which has internal pressure, and found the deformation of the sphere as a function of the applied force on the vertex. Taber showed that the hollow sphere model (Koiter [42]) and fluid-filled sphere model (Taber [43]) have negligible difference at strains less than 15%. It has been shown that strain (at 5 MPa) is less than 15% after first compression cycle for CL samples in [52]. Also, because of relatively low strain of CLs, the forces on the sides of agglomerates have negligible effect on the deformation of ionomer shell. Therefore, Koiter’s model [42] can be used in this study to calculate the deformation of the ionomer shell.

$$d = \frac{\sqrt{3(1 - \nu^2)}}{4} \frac{F \cdot r}{t_{\text{ionomer}}} \left[1 + \frac{2(1 + \nu)}{\pi \lambda^2} \left(\ln \lambda + \gamma_0 - 1 + \frac{\ln 2}{2} \right) + \frac{4}{3 \pi \lambda^2} \right]$$

(22)

$$\lambda^2 = \sqrt{3(1 - \nu^2)} \frac{r}{t_{\text{ionomer}}}$$

(23)

where F is the applied force, t_{ionomer} is the thickness of the shell, r is the radius of the spherical shell, λ is a factor depending on the geometry and Poisson’s ratio of material, $\gamma_0 = 0.5772$ is the Euler’s constant [42]. Using the above equations, one can find the deformation of the ionomer shell that covers the agglomerates.

Overall deformation of CL

Our experimental results [52] showed that the compressive behaviour of CL under compression had two regions and was not linear. The reason for this behaviour is the change in
microstructure as CL undergoes compression. As a porous material gets compressed, contact nodes inside the layer increase, porosity decreases, and the material gets stiffer at higher pressures. This effect should be considered in the mechanical model because the porosity of the CL is continuously changing during compression. To account for this change, a recursive analytical model is developed in this paper. A new porosity is calculated based on new thickness after a small increment of force. In other words, it is considered that the force is applied in finite number of small steps (force increments steps) and after each step, new thickness and new porosity are calculated based on the given equations. Hence a new geometry is built for CL after each step. Eq. (24) is used to calculate CL porosity after deformation at any level, which has been widely used in the literature to model different properties of porous media [12,44–50]. This equation is based on the assumption that the solid volume inside the material does not change during compression. This is valid since the material is porous and the pores become smaller or even closed during compression and so the volume of solid material remains constant. Fig. 6 shows the flowchart of the CL compression model developed in this study. Obviously, as the number of steps in this model increases, the accuracy of the model increases and it’s important to find the optimum number of steps. It is found that 500 steps are enough to get reasonable behaviour and beyond that the maximum strain changes less than 0.1%, which means that 500 steps are “infinity-enough” for our model.

![Flowchart of the proposed compression model for CLs (recursive model; at each step, a new geometry is created).](image-url)

Table 1 – Properties of different CLs used in this study (model inputs).

<table>
<thead>
<tr>
<th>CL Design number</th>
<th>I/C ratio (go/gt)</th>
<th>Densitometer porosity (%)</th>
<th>CL Thickness (μm)</th>
<th>Average size of agglomerates (nm) (calculated using PSD & model)</th>
<th>t_{ionomer} (nm) (calculated using PSD & model)</th>
<th>Mechanical properties of ionomer (measured using TMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design 1</td>
<td>1.1</td>
<td>58.2</td>
<td>9.1</td>
<td>195</td>
<td>12.4</td>
<td>E_{ionomer} = 93 MPa = 0.3</td>
</tr>
<tr>
<td>Design 2</td>
<td>0.9</td>
<td>52.0</td>
<td>6.9</td>
<td>158</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>Design 3</td>
<td>0.7</td>
<td>52.4</td>
<td>6.1</td>
<td>142</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Design 4</td>
<td>0.7</td>
<td>50.5</td>
<td>4.6</td>
<td>103</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Design 5</td>
<td>0.9</td>
<td>33.4</td>
<td>6.3</td>
<td>60</td>
<td>8.3</td>
<td></td>
</tr>
</tbody>
</table>
\[\varepsilon_{\text{new}} = 1 - \frac{t_{\text{CL},0}}{t_{\text{CL,new}} (1 - \varepsilon_0)} \quad \text{or} \quad \varepsilon_{\text{new}} = 1 - \frac{1}{1 + \frac{t_{\text{CL},0}}{t_{\text{CL,new}}}} (1 - \varepsilon_0) \]

(24)

Under 5 MPa pressure, the deformation due to the Hertzian contact between carbon particles (Eq. (19)) is \(-10^{-7}\) m, deformation of the agglomerates as a packed bed (Eq. (20)) is \(-10^{-6}\) m, and the deformation of ionomer shell (Eq. (22)) is \(-10^{-3}\) m. This is due to the fact that ionomer has the lowest Young's modulus, 93 MPa compared to carbon particles Young's modulus of \(-15\) GPa [51]. Based on this order of magnitude analysis, the 9–14\% strain at 5 MPa (experimental data collected in Part 1) is dominantly because of deformation of ionomer shell. It is considered that the carbon particles inside the agglomerates can slide and move freely on each other so that the ionomer shell deforms and Koiter [42] model can be used. To this end, only the deformation of the ionomer shell is considered for CL compression modeling in this study.

Results and discussion

The results of the proposed mechanical model are compared with the experimental results obtained in the Part 1 of this study [52]. The pore size distribution, I/C ratio, porosity, thickness, ink properties, and pressure are the inputs of the model which were measured for all the designs. Table 1 shows the properties of each design in this study. The pore size
distribution of each sample was measured using N₂ adsorption porosimetry [26] and it is used as input for geometrical model to calculate the average size of agglomerates and thickness of ionomer (t₁onomer) which are shown in Table 1.

Fig. 7 shows the comparison between the model and experimental pressure vs strain for CL Design 1. As shown in Fig. 7, the model captures the trend of the data and shows a reasonable agreement with the experimental results. It should be noted that the present model is non-linear as the change in porosity is considered in the model, even though the equations used for the deformation of ionomer is linear. Also note that the model is capable of predicting the non-linear behaviour of CLs over both regions that is explained in the Part 1 of this study [52]. The difference between the model and experimental data is relatively larger in the second region where the pressure is higher. This difference can be attributed to the hypothesis that some of the pores, thus the microstructure of the CL, are plastically deformed under higher pressure. More experimental studies are needed to better understand the behaviour at pressures between 2 to 5 MPa.

Similar behaviour is observed for other CL Designs. Fig. 8 shows a comparison of the present model and experiments for pressure vs strain of other CL Designs. The following can be concluded: i) the present model captures the trend of the experimental results and is able to predict the change in strain rate of the material with reasonable accuracy, ii) the model predicts the non-linear behaviour of the CL as the porosity continuously decreases. The average relative difference between the model and experimental data is 15%. The model over-estimates the strain at higher pressures for CL Designs 2 to 4 and under-estimates the strain at higher pressures for CL Design 1 and 5, which is within the uncertainty of the experimental results.

As shown in Figs. 7 and 8, the present model successfully captures the trend of the experimental results which makes it very useful for predicting compressive behaviour of CLs and other properties that are dependent on porosity or applied pressure. The proposed model can be used for other porous layers with similar microstructures since the core of the model considers the porosity change during compression and the inputs are salient geometrical parameters of a thin porous layer. The relative difference between the model and the experimental results are reasonable, and more importantly, the model captures the trends of the data.

Conclusion

In this study, an analytical model was developed for CL compression under uniaxial pressure using a unit cell approach. A unit cell was developed based on the microstructure of CL such that it could be a representative of the entire CL, meaning that it had the same microstructural properties of CL. The geometry of the unit cell was found using pore size distribution, ionomer to carbon weight ratio, and porosity. Three deformations: i) deformation due to Hertzian contact between carbon particles inside agglomerates, ii) deformation of agglomerates, and iii) deformation of the ionomer film were considered for the simplified geometry of the unit cell. Deformation of ionomer film around agglomerates was found to be the dominant deformation mode CL compression. The proposed analytical model is validated against experimental pressure vs strain data sets for five different CL designs with different ionomer to carbon weight ratios, porosities, thicknesses, and dry milling times. The model predicted the non-linear behaviour of CLs under compression with a reasonable discrepancy. The developed geometrical model has also been used in other studies in our group and successfully predicted other properties such as thermal conductivity and gas diffusivity of CLs. The main focus of this work has been on PEM fuel cell catalyst layers; however, the proposed modeling platform can be implemented to study mechanical properties of other porous thin layers, such as membrane and graphite sheets.

Acknowledgements

This research was supported by funding from the Natural Sciences and Engineering Research Council of Canada Collaborative Research and Development (Grant No. CRDPJ 452170-13) and Automotive Fuel Cell Corporation (AFCC), Canada. AFCC Structure, Properties & Performance Research Division is also acknowledged for their technical support.

References

[9] Zenyuk IV, Kumbur EC, Litster S. Deterministic contact mechanics model applied to electrode interfaces in polymer...

[26] Salari S. Gas diffusion in thin porous catalyst layers of PEM fuel cells. Simon Fraser University; 2018.

