Capacitance-resistance-modeling of sorption thermal energy storage systems

Mina Rouhani¹ and Majid Bahrami¹

¹ Laboratory for Alternative Energy Conversion (LAEC), School of Mechatronic Systems Engineering, Simon Fraser University

Capacitance Resistance Model (CRM)

- A lumped-parameter capacitance resistance model (CRM) is developed to design, optimize, and control thermal energy storage (TES) systems, which offers a reasonable trade-off between accuracy and computational time.

- Thermal network of the CRM:
 - Heat transfer resistance + Resistance
 - Thermal mass + Capacitance
 - Sorption, evaporation, and condensation energy + Current sources
 - Inlet temperatures of HTF, coolant, and chilled water + Voltage sources

- Assumptions:
 - Thermodynamic equilibrium between sorbent and sorbate
 - Uniform temperature and solute distribution inside sorbent
 - Uniform sorbent size
 - Negligible heat loss

- Equations:
 - Heat balance of the sorbent, evaporator and condenser
 - Mass balance of sorbate
 - Sorption equilibrium equation

- The kinetic properties of the sorbent bed, including the mass diffusivity (D_ads) and characteristic energy (E_s), which are obtained from our in-situ mass measurement of the full-scale sorbent bed, are fed to the proposed CRM.

Results

- A CRM is developed that significantly simplifies the assessment of the impact of materials, components, and processes on overall performance metrics and enables real-time control of the thermal storage system based on demand, supply, and state-of-charge of sorption thermal energy storage systems.

- The present model is successfully validated with the experimental data, which was collected from a custom-built S-TES in our lab, under various operating conditions.

- For heat storage (HS) coated FAM-202 S-TES, the material-based energy storage density (ESD) of 0.934 MJkg⁻¹ (0.607 GJm⁻³) and averaged specific power (SP) of 504 Wkg⁻¹ are measured.

- For cold storage (CS) coated FAM-202 S-TES, the material-based ESD of 0.493 MJkg⁻¹ (0.320 GJm⁻³) and averaged SP of 267 Wkg⁻¹ are obtained.

- Considering the optimum discharge-to-charge time of 1.6, a maximum SP of 1.207 and 335 Wkg⁻¹ are measured for heat storage, HS, and cold storage, CS, coated S-TES, respectively.

Experimental Study

- A CRM is developed that significantly simplifies the assessment of the impact of materials, components, and processes on overall performance metrics and enables real-time control of the thermal storage system based on demand, supply, and state-of-charge of sorption thermal energy storage systems.

- The present model is successfully validated with the experimental data, which was collected from a custom-built S-TES in our lab, under various operating conditions.

- For heat storage (HS) coated FAM-202 S-TES, the material-based energy storage density (ESD) of 0.934 MJkg⁻¹ (0.607 GJm⁻³) and averaged specific power (SP) of 504 Wkg⁻¹ are measured.

- For cold storage (CS) coated FAM-202 S-TES, the material-based ESD of 0.493 MJkg⁻¹ (0.320 GJm⁻³) and averaged SP of 267 Wkg⁻¹ are obtained.

- Considering the optimum discharge-to-charge time of 1.6, a maximum SP of 1.207 and 335 Wkg⁻¹ are measured for heat storage, HS, and cold storage, CS, coated S-TES, respectively.

Nomenclature

- T (°C): Temperature
- Q (W): Heat flow rate
- t (s): Time
- m (kg): Mass
- C (J/kg°C): Thermal capacitance
- R (W/K): Resistance
- D (m²/s): Diffusion coefficient
- E (J/kg): Energy
- S (J/K): Specific power
- A (m²): Area
- h (W/m²K): Overall heat transfer coefficient
- f (kg/s): Flow rate
- z (mm): Thickness
- L (m): Length
- T_s (°C): Sorbent bed temperature
- T_c (°C): Condenser temperature
- T_e (°C): Evaporator temperature
- P (W): Power
- G (kJ/kg): Activation energy
- K (kJ/kg°C): Equilibrium water uptake
- S (W/kg°C): Specific power

- R_{sorb} (W/K): Resistance between the sorbent bed and the environment
- R_{cond} (W/K): Resistance between the condenser and the coolant fluid
- R_{ch} (W/K): Resistance between the condenser and the sorbent bed
- C_s (J/K): Thermal capacitance of the sorbent bed
- C_c (J/K): Thermal capacitance of the condenser
- C_p (J/kg°C): Specific heat capacity
- P_{disch} (W/kg): Discharge power
- P_{chrg} (W/kg): Charging power
- E_{esd} (MJ/kg): Energy storage density
- t_{disch} (h): Time of discharging
- t_{chrg} (h): Time of charging
- SP (W/kg): Specific power