Homework 1 Solutions

1. Prove or disprove: If every vertex of G has degree 2 , then G is a cycle.

Solution: This is false. A graph with two components each of which is a cycle is a counterexample.
2. Prove that a bipartite graph has a unique bipartition (up to switching the two sets) if and only if it is connected.

Solution: First suppose that G is a disconnected bipartite graph with bipartition (A, B). Let G^{\prime} be a component of G, set $X=V\left(G^{\prime}\right)$ and let $G^{\prime \prime}=G-X$. Setting $A^{\prime}=A \cap X$ and $B^{\prime}=B \cap X$ we find that $\left(A^{\prime}, B^{\prime}\right)$ is a bipartition of G^{\prime} and similarly $A^{\prime \prime}=A \backslash X$ and $B^{\prime \prime}=B \backslash X$ is a bipartition of $G^{\prime \prime}$. Now, since there are no edges between X and the rest of the graph it follows that $(A, B)=\left(A^{\prime} \cup A^{\prime \prime}, B^{\prime} \cup B^{\prime \prime}\right)$ and $\left(A^{\prime} \cup B^{\prime \prime}, B^{\prime} \cup A^{\prime \prime}\right)$ are inequivalent bipartitions of G.

Next suppose that (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ are bipartitions of G, with $A^{\prime} \neq A$ and $A^{\prime} \neq B$. Set $X=\left(A \cap A^{\prime}\right) \cup\left(B \cap B^{\prime}\right)$ and $Y=\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)$. It follows immediately that X, Y are disjoint. If $X=\emptyset$ then $A \cap A^{\prime}=\emptyset$ and $B \cap B^{\prime}=\emptyset$ so $A \subseteq B^{\prime}$ and $B^{\prime} \subseteq A$. But then we have $A=B^{\prime}$ and $B=A^{\prime}$ giving us a contradiction. Thus $X \neq \emptyset$ and by a similar argument $Y \neq \emptyset$. It follows from the existence of our bipartitions that any edge with an end in $A \cap A^{\prime}$ must have its other endin $B \cap B^{\prime}$ and similarly any edge with an end in $B \cap B^{\prime}$ must have its other end in $A \cap A^{\prime}$. But then there are no edges from X to Y and therefore G is disconnected.
3. We say that a set of vertices X in a graph is independent if no edge has both of its ends in X. In the graph below, find all maximal paths and maximal independent sets.

Solution: We have labelled the vertices above. The maximal independent sets are now $\{a, c\},\{d, c\}$, and $\{b\}$. The maximal paths are those with vertex sequence a, b, d, c, b, a, d, and c, b, d, a.

If H_{1}, \ldots, H_{m} are subgraphs of G with $\cup_{i=1}^{k} E\left(H_{i}\right)=E(G)$ and $E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset$ for every $1 \leq i<j \leq k$ we say that H_{1}, \ldots, H_{m} form a decomposition of G.
4. Find a decomposition of the Petersen graph into three pairwise isomorphic subgraphs. (Hint: it might help to find a drawing of Petersen with a 3 -fold symmetry)

Solution: Here is an alternative description of the Petersen graph. Let G to be the graph with vertex set consisting of all two element subsets of $\{1,2,3,4,5\}$ and two vertices A, B adjacent if $A \cap B=\emptyset$. Then G is isomorphic to the Petersen graph. Now, for every partition P of $\{1,2,3,4\}$ into two sets of size two, there is a 6 vertex subgraph H_{P} of G which contains exactly those edges incident with a point in P. These three subgraphs give a decomposition of G into pairwise isomorphic graphs, as required.
5. Prove that K_{n} has a decomposition into three pairwise isomorphic subgraphs if and only if $n+1$ is not divisible by 3 . (Hint: for the case where n is divisible by 3 , split the vertices into three sets of equal size)

Solution: We break into cases dependent on the residue class of n modulo 3:
Case 1: $n \cong 2(\bmod 3)$
In this case $\left|E\left(K_{n}\right)\right|=\binom{n}{2}=\frac{1}{2} n(n-1)$ is not divisible by 3 , so there is no decomposition of K_{n} into three pairwise isomorphic subgraphs.

Case 2: $n \cong 0(\bmod 3)$
Here we exhibit a decomposition of a complete graph on n vertices into three isomorphic subgraphs. Let X_{0}, X_{1}, X_{2} be disjoint sets of size $\frac{n}{3}$, and for every $0 \leq i \leq 2$ let H_{i} be the simple graph with vertex set $X_{i} \cup X_{i+1}$ (working modulo 3) and two vertices adjacent if and only if at least one lies in X_{i}. Then H_{0}, H_{1}, H_{2} form a decomposition of the complete graph on $X_{0} \cup X_{1} \cup X_{2}$ into pairwise isomorphic subgraphs as required.

Case 3: $n \cong 1(\bmod 3)$
Again, we shall exhibit a decomposition of a complete graph on n vertices into three isomorphic subgraphs. Let X_{0}, X_{1}, X_{2} be disjoint sets of size $\frac{n-1}{3}$ and let the subgraphs H_{0}, H_{1}, H_{2} be as above. Now, let y be a new vertex, and for $0 \leq i \leq 2$ let H_{i}^{\prime} be the graph obtained from H_{i} by adding the vertex y and all edges from X_{i} to y. Then $H_{0}^{\prime}, H_{1}^{\prime}, H_{2}^{\prime}$ form a decomposition of the complete graph on $X_{0} \cup X_{1} \cup X_{2} \cup\{y\}$ into three pairwise isomorphic subgraphs as required.
6. Show that if K_{n} can be decomposed into triangles, then either $n-1$ or $n-3$ is a multiple of 6 .

If K_{n} can be decomposed into triangles (cycles of length 3), then $|E(G)|=\binom{n}{2}=\frac{1}{2} n(n-1)$ must be a multiple of three, so either n or $n-1$ is a multiple of 3 . Similarly, if K_{n} can be decomposed into triangles, then every vertex must have even degree (since each triangle uses an even number of edges at each vertex) so $2 \mid n-1$. Thus, either $3 \mid n$ and $2 \mid n-1$ giving us $6 \mid n-3$, or $3 \mid n-1$ and $2 \mid n-1$ which gives us $6 \mid n-1$.
7. Prove that every simple connected graph with an even number of edges can be decomposed into paths of length 2. (Hint: induction).
Proof: We proceed by induction on $|E(G)|$. As a base case, note that the result holds trivially (i.e. using an empty decomposition) when $|E(G)|=0$ For the inductive step, let G be a connected graph with $|E(G)|$ an even number >2, and assume the statement is true for all graphs with fewer edges.

Since G is connected, and has at least two edges, it does not have two adjacent vertices of degree 1 , so we may choose a vertex $y \in V(G)$ of degree ≥ 2. Let x, z be distinct vertices adjacent to y, let $G^{\prime}=G-\{x y, y z\}$, and let H_{1}, \ldots, H_{m} be the components of G^{\prime}. Theorem 2.5 shows that $m \leq 3$, but further, every H_{i} must contain at least one of x, y, z.

If every H_{i} has an even number of edges (for $1 \leq i \leq m$), then the result follows by applying induction to each component, merging these lists of two-edge paths, and then appending the two edge path with edges $x y, y z$. Thus, we may assume that at least one of H_{1}, \ldots, H_{m} has an odd number of edges. Since $m \leq 3$ and $|E(G)|$ is even, it follows that there are exactly two components, say H_{1} and H_{2}, which have an odd number of edges. A quick case analysis reveals that it is always possible to add one of $x y, y z$ to H_{1} and add the other to H_{2} (along with the ends of these edges) to form connected subgraphs H_{1}^{\prime} and H_{2}^{\prime} (respectively). Now the result follows by applying induction to $H_{1}^{\prime}, H_{2}^{\prime}$, and, if $m=3, H_{3}$.

