Homework 3

Problem 1. Let G be a graph with the property that every subgraph of G has a vertex of degree ≤ 1 . Show that G is a forest.

Solution: If G contains a cycle $C \subseteq G$, then C has all vertices of degree ≥ 2 , giving us a contradiction. Thus, G is a forest.

Problem 2. We proved in class (and in tutorial) that every connected graph G with $|V(G)| \geq 2$ has two vertices x_1, x_2 so that $G - x_i$ is connected for i = 1, 2. Find an alternative proof of this fact using spanning trees.

Solution: Choose a spanning tree T of G. We have $|V(T)| \ge 2$ so T has at least two leaf vertices x_1 and x_2 . Now $T - x_i$ is connected for i = 1, 2 so $G - x_i$ is also connected for i = 1, 2.

Problem 3. Let $k \geq 2$ and let T be a tree in which every vertex has degree 1 or degree k. Show that |V(G)| - 2 is a multiple of k - 1.

Solution: Suppose that T has a vertices of degree 1 and b vertices of degree k. Then

$$(a+b)+|V(G)|-2=2|V(G)|-2=2|E(G)|=\sum_{v\in V(G)}deg(v)=a+bk.$$

Subtracting a + b from both sides shows that |V(G)| - 2 = b(k - 1) which completes the proof.

Problem 4. Let T be a tree in which every vertex has degree 1 or degree 3. Prove that there is a vertex adjacent to two leaves.

Problem 5. Let $n \geq 3$ and let G be an n vertex graph with the property that G - v is a tree for every $v \in V(G)$. What is the graph G?

Solution: G must be a cycle. First we prove that G is connected. If G has > 2 components, then G - v is disconnected for every $v \in V(G)$, a contradiction. If G has exactly two components, then by choosing v to be a vertex in a component with ≥ 2 vertices we again get the contradiction that G - v is disconnected. Thus G must be connected.

If G has no cycle, then it is a tree, with at least three vertices. If we choose v to be a vertex of degree ≥ 2 , then G - v will be disconnected. Thus, G must have a cycle C.

If there is a vertex $v \in V(G) \setminus V(C)$, then G - v has a cycle - namely C, which is a contradiction. If there is an edge $e \in E(G) \setminus E(C)$, then removing any vertex of C which is not an endpoint of e will still leave a cycle. It follows that G = C, so G is a cycle, as claimed.

Problem 6. Let T be a tree with k leaves and set $t = \lceil \frac{k}{2} \rceil$. Prove that there exist paths P_1, P_2, \ldots, P_t which satisfy both properties below.

- (i) $\bigcup_{i=1}^{t} P_i = T$
- (ii) $V(P_i) \cap V(P_j) \neq \emptyset$ for every $1 \le i \le j \le t$.

(Hint: first prove that there exist paths satisfying (i))

Solution: Let L be the set of leaf vertices. Since every tree is connected, every two points in L are contained in a path. Thus, we may choose a collection of paths P_1, \ldots, P_t so that $L \subseteq \bigcup_{i=1}^t V(P_i)$. Subject to this constraint, choose P_1, \ldots, P_t so that $\sum_{i=1}^t |E(P_i)|$ is maximum. We shall show that P_1, \ldots, P_t satisfy (i) and (ii) as well.

Suppose (for a contradiction) that $V(P_i) \cap V(P_j) = \emptyset$. Then we may choose a path $Q \subseteq T$ with ends u, v so that $V(Q) \cap V(P_i) = \{u\}$ and $V(Q) \cap V(P_j) = \{v\}$. But then the subgraph $H = P_i \cup P_j \cup Q$ contains two paths P'_i and P'_j so that $P'_i \cup P'_j = H$ and $P'_i \cap P'_j = Q$. This pair of paths contains the same leaves as P_i and P_j but have more total edges, contradicting our choice. It follows that P_1, \ldots, P_t satisfy (ii).

Suppose (for a contradiction) that $uv \notin \bigcup_{i=1}^t E(P_i)$. Since these paths contain all of the leaves, u and v must not be leaves. But then T - uv is a forest with two components, say H_1, H_2 each containing at least one point in L. However, then there must exist paths,

say $P_i \subseteq H_1$ and $P_2 \subseteq H_2$ for which $V(P_i) \cap V(P_j) = \emptyset$ contradicting (ii). It follows that P_1, \ldots, P_t satisfy (i) as well.

Problem 7. Let d_1, d_2, \ldots, d_n be a sequence of positive integers with $\sum_{i=1}^n d_i = 2n - 2$. Show that there exists a tree with vertex set $\{x_1, \ldots, x_n\}$ so that $deg(x_i) = d_i$ for every $1 \le i \le n$.

Solution: We proceed by induction on n. As a base, observe that when n=2 there is a unique sequence of positive integers d_1, d_2 with $d_1 + d_2 = 2$, namely $d_1 = d_2 = 1$, and K_2 is a tree with two vertices of degree one. For the inductive step, we may assume $n \geq 3$. Since $\sum_{i=1}^{n} d_i = 2n - 2 < 2n$, we may assume (without loss) that $d_n = 1$. Similarly, since $\sum_{i=1}^{n} d_i = 2n - 2 > n$ we may assume (without loss) that $d_1 > 1$. Now, by applying induction to the sequence $d_1 - 1, d_2, \ldots, d_{n-1}$ we may choose a tree T with vertex set $\{x_1, \ldots, x_{n-1}\}$ so that $deg(x_i) = d_i$ if $2 \leq i \leq n - 1$ and $deg(x_1) = d_1 - 1$. Now, add a new vertex x_n to this tree and a new edge x_1x_n . This forms a tree with the required degree properties.