Homework 5 Solutions

Problem 1. If G is a graph with a maximum matching of size 2k, what is the smallest possible size of a maximal matching in G?

Solution: The answer is k. To construct such a graph, take a graph with k components, each of which is a three edge path. The unique maximum matching uses two edges from each component, but there is a maximal matching using just one from each component. To prove that this is best possible, we need to prove that every graph G with a matching M^* of size 2k has the property that every maximal matching M has size at least k. To see this, note that in order to be maximal, the matching M must cover at least one endpoint from each edge of M^* (otherwise we could just add this edge to M, thus contradicting maximality). It follows that M must cover a set of 2k vertices, so it must have size at least k.

Problem 2. Prove or disprove: Every tree has at most one perfect matching (a perfect matching is a matching covering every vertex).

Solution: This is true. Let M, M' be perfect matchings in the tree T = (V, E) and consider the graph on V with edge set $M \cup M'$. Since M and M' both cover all the vertices, every component of this new graph is either a single edge (common to both M and M') or a cycle. Since T is a tree, there can be no cycle, so we conclude that M = M'.

Problem 3. Let G be a simple 2n vertex graph and assume that every vertex has degree $\geq n+1$. Show that G has a perfect matching.

Solution: It follows from Theorem 1.15 that G has a Hamiltonian cycle. Taking every second edge of this cycle yields a perfect matching.

Problem 4. Let G be a bipartite graph with bipartition (A, B), let $S \subseteq A$ and let $T \subseteq B$. Assume there exist matchings M and M' so that M covers S and M' covers T, and then prove that there exists a matching M^* which covers $S \cup T$.

Solution: Consider the graph $H = (V(G), M \cup M')$. Each component of H is either an isolated vertex, an edge which is contained in $M \cap M'$, a cycle with edges alternately in M and M', or a path where edges are alternately from M and M'. Let H_1, \ldots, H_ℓ be the components of H and choose a matching M_i from each H_i as follows. If H_i is an isolated vertex, then it is not in $S \cup T$ and we let $M_i = \emptyset$. If H_i is either an edge in $M \cap M'$ or a cycle,

or a path of odd length, then H_i has a matching M_i which covers $V(H_i)$, so in particular it covers $(S \cup T) \cap V(H_i)$. Finally, we consider the case that H_i is a path of even length. Here the edges must alternate between M and M', so one end of the path is incident with an edge in M and the other in M'. However, there must be an odd number of vertices in this path, so either both ends are in A or both ends are in B. In the former case we let $M_i = M \cap E(H_i)$ and in the latter we set $M_i = M' \cap E(H_i)$. In either case we again have that all vertices in $S \cup T$ which are contained in H_i are covered by M_i . So, now $\bigcup_{i=1}^{\ell} M_i$ is a matching in G covering $S \cup T$ as desired.

Problem 5. Let X be a finite set and let A_1, A_2, \ldots, A_m be subsets of X. Prove that one of the following is true

- 1. There exists a set $I \subseteq \{1, 2, ..., m\}$ so that $|\bigcup_{i \in I} A_i| < |I|$.
- 2. There exist distinct elements $a_1, a_2, \ldots, a_m \in X$ so that $a_i \in A_i$ for every $1 \le i \le m$.

Hint: turn this into a graph theory problem.

Solution: Define a simple bipartite graph G with vertex set $\{1, 2, ..., m\} \cup X$ and bipartition $(\{1, 2, ..., m\}, X)$ by the rule that $i \in \{1, 2, ..., m\}$ and $x \in X$ are adjacent if and only if $x \in A_i$. If there exists a matching M in G which covers $\{1, 2, ..., m\}$, then for every $1 \le i \le m$ let $a_i \in X$ be the element which is paired with i by M. Now, by construction $a_1, a_2, ..., a_m$ are distinct and $a_i \in A_i$ for every $1 \le i \le m$. If there is no such matching, then by Hall's Marriage Theorem, there must exist a set $I \subseteq \{1, 2, ..., m\}$ so that |N(I)| < |I|. However, then we have $|I| < |N(I)| = |\bigcup_{i \in I} A_i|$ so the first outcome holds.

Problem 6. Prove that if man m is paired with woman w in some stable marriage, then w does not reject m in the Gale-Shapley Algorithm. Hint: consider the first occurrence of such a rejection.

Solution: Let M be a stable marriage, and suppose for a contradiction that during the Gale-Shapley algorithm, some man m is rejected by a woman w for which m and w are paired in M. Consider the first step of the algorithm during which such a rejection occurs. Since m is rejected by w on this step, w must receive a proposal from some man m' whom she prefers to m on this step. Since, by assumption m is a stable marriage, it follows that m' must be paired with a woman m' in m with the property that m' prefers m to m. However,

since m' is proposing to w at this step of the Gale-Shapley algorithm, he must already have been rejected by w', but this contradicts our assumption that this was the first step of the algorithm on which a rejection of the given type occurs.

Problem 7. Generalizing Tic-Tac-Toe A positional game consists of a set X of positions and a family $W_1, W_2, \ldots, W_m \subseteq X$ of winning sets (Tic-Tac-Toe has 9 positions corresponding to the 9 boxes, and 8 winning sets corresponding to the three rows, three columns, and two diagonals). Two players alternately choose positions; a player wins when they collect a winning set.

Suppose that each winning set has size at least a and each position appears in at most b winning sets (in Tic-Tac-Toe a=3 and b=4). Prove that Player 2 can force a draw if $a \geq 2b$. Hint: Form a bipartite graph G with bipartition (X,Y) where $Y=\{W_1,W_2,\ldots,W_m\} \cup \{W'_1,W'_2,\ldots,W'_m\}$ with edges xW_j and xW'_j whenever $x \in W_j$. How can Player 2 use a matching in G?

Solution: Let $Y' \subseteq Y$ and define S to be the set of all edges incident with a vertex in Y'. Since every vertex in Y has degree at least a we must have $|S| \ge a|Y'|$. On the other hand, every vertex in X has degree at most 2b, so we must have $2b|N(Y')| \le |S|$. Combining these gives us $a|Y'| \le 2b|N(Y')|$ and together with the assumption $a \ge 2b$ we find $|N(Y')| \ge |Y'|$. So, it now follows from Hall's Theorem that there is a matching M which covers Y.

For every $1 \leq i \leq m$ let Q_i be the set consisting of the two vertices in X which are matched to W_i and W'_i . Now the sets Q_1, \ldots, Q_m are disjoint two element subsets of X and every W_i contains Q_i . Here is a strategy which will guarantee the second player a draw (or better). For each move made by the first player, if the first player chooses a position $x \in Q_i$ for some $1 \leq i \leq m$ then the second player responds by choosing the other position in Q_i if it is available. Otherwise, the second player just plays arbitrarily. It follows from a straightforward induction that after every turn of the second player, there is no set Q_i for which player 1 has chosen one element, and player 2 none. It follows from this that player 1 can never choose both members of a set Q_i , and from this that player 1 cannot choose all members of any W_i . Thus, player 1 cannot win when player 2 adopts this strategy.