Homework 9

Problem 1. Find a strongly connected directed graph with 100 vertices and the fewest possible edges.

Problem 2. Construct a tournament on 10 vertices with no directed cycle of length 3.

Problem 3. Let D be a directed graph whose underlying graph is connected. Let $u_1, u_2 \in V(D)$ and assume that $deg^+(u_1) > deg^-(u_1)$ and that $deg^+(v) = deg^-(v)$ for every vertex $v \in V(D) \setminus \{u_1, u_2\}$. Prove that D contains a directed walk from u_1 to u_2 .

Problem 4. Show that every tree can be oriented so that in the resulting digraph every vertex v satisfies $|deg^+(v) - deg^-(v)| \le 1$.

Problem 5. Show that every graph can be oriented so that in the resulting digraph every vertex v satisfies $|deg^+(v) - deg^-(v)| \le 1$.

Problem 6. Let k be an integer and let D be a directed graph with the property that $deg^+(v) = k = deg^-(v)$ for every $v \in V(D)$. Prove that there exist vertex disjoint directed cycles C_1, \ldots, C_t so that $\bigcup_{i=1}^t V(C_i) = V(D)$. (Hint: construct a bipartite graph H from D so that each vertex in D splits into two vertices in H.)

Problem 7. Let D be a strongly connected orientation of the graph G. Prove that if G has a cycle of odd length, then D has a directed cycle of odd length. (Hint: consider each pair $\{v_i, v_{i+1}\}$ in an odd cycle of G with vertices v_1, \ldots, v_k).