3 Matchings

Hall's Theorem

Matching: A matching in G is a subset $M \subseteq E(G)$ so that no edge in M is a loop, and no two edges in M are incident with a common vertex. A matching M is maximal if there is no matching M' with $M \subset M'$ and maximum if there is no matching M'' with |M| < |M''|.

Alternating & Augmenting Paths: If M is a matching in G, a path $P \subseteq G$ is M-alternating if the edges of P belong alternately to M and to $E(G) \setminus M$ (in other words, for every $v \in V(P)$ with degree 2 in P, some edge of P incident with v is in M). The path P is M-augmenting if it is M-alternating, has distinct ends, say u, v, and no edge of M is incident with u or v in G (not just in P).

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M-augmenting path.

Proof: For the "only if" direction we prove the contrapositive. Assuming G contains an M-augmenting path P, the set $(M \setminus E(P)) \cup (E(P) \setminus M)$ is a matching with larger cardinality than M, so M is not maximum.

For the "if" direction, we also prove the contrapositive, so we shall assume that M is not maximum, and show there is an augmenting path. Since M is not maximum, there exists a matching M' with |M'| > |M|. Consider the subgraph $H \subseteq G$ with V(H) = V(G) and $E(H) = M \cup M'$. Every component of this graph is either a cycle of even length with edges alternately in M and M', a path with edges alternately in M and M', or a path consisting of one edge e with $e \in M \cap M'$. Since |M'| > |M|, there is a component of H which is a path with more edges in M' than M. Then P is an M-augmenting path. \square

Neighbors: If $X \subseteq V(G)$, the *neighbors* of X, is the set

$$N(X) = \{v \in V(G) \setminus X : v \text{ is adjacent to some point in } X\}.$$

For $x \in X$, we define $N(x) = N(\{x\})$.

Cover: We say that a set of edges $S \subseteq E(G)$ covers a set of vertices X if every $x \in X$ is incident with some edge in S. Similarly, a set of vertices $X \subseteq V(G)$ covers a set of edges $S \subseteq E(G)$ if every edge in S is incident with some point in X.

Theorem 3.2 (Hall's Marriage Theorem) Let G be a bipartite graph with bipartition (A, B). Then, there is a matching $M \subseteq G$ which covers A if and only if $|N(X)| \ge |X|$ for every $X \subseteq A$.

Proof: The "only if" condition is obvious, if there exists $X \subseteq A$ with |N(X)| < |X|, then no matching can cover A.

For the "if" direction, let M be a maximum matching, and suppose that M does not cover A. Choose a vertex $u \in A$ not covered by M, and define the sets X, Y as follows:

```
X = \{x \in A : \text{there is an } M\text{-alternating path from } u \text{ to } x\}
```

 $Y = \{y \in B : \text{there is an } M\text{-alternating path from } u \text{ to } y\}$

Let $y \in Y$ and choose an M-alternating path P from u to y. Note that by parity, the last edge of P is not in M. Now, P cannot be M-augmenting, so there must exist an edge in M incident with y, call it yx. We claim that $x \in X$. This is immediate if $x \in V(P)$. Otherwise, we may extend P by the edge xy to get an M-alternating path ending at x. Thus, every point in Y is joined by an edge in M to a point in $X \setminus \{u\}$. It follows that |Y| < |X|.

Let $x \in X$ and let $y \in N(x)$. Since $x \in X$, we may choose an M-alternating path P from u to x. Note that the last edge of this path is in M. We claim that $y \in Y$. This is immediate if $y \in V(P)$. Otherwise, $xy \notin M$ (why?), so we may extend P by the edge xy to obtain a new M-alternating path ending at y. Thus, in either case, we find that $y \in Y$. It follows from this that $N(X) \subseteq Y$. But then, $|N(X)| \leq |Y| < |X|$. This completes the proof. \square

Regular: A graph G is k-regular if every vertex of G has degree k. We say that G is regular if it is k-regular for some k.

Perfect Matchings: A matching M is *perfect* if it covers every vertex.

Corollary 3.3 Every regular bipartite graph has a perfect matching.

Proof: Let G be a k-regular bipartite graph with bipartition (A, B). Let $X \subseteq A$ and let t be the number of edges with one end in X. Since every vertex in X has degree k, it follows that k|X| = t. Similarly, every vertex in N(X) has degree k, so t is less than or equal to k|N(X)|. It follows that |X| is at most |N(X)|. Thus, by Hall's Theorem, there is a matching covering A, or equivalently, every maximum matching covers A. By a similar argument, we find that every maximum matching covers B, and this completes the proof. \square

Covers

Covers: A vertex cover of G is a set of vertices $X \subseteq V(G)$ so that every edge is incident with some vertex in X. Similarly, an edge cover of G is a set of edges $S \subseteq V(G)$ so that every vertex is incident with some edge in S.

Independent Set: A subset of vertices $X \subseteq V(G)$ is *independent* if there is no loop with endpoint in X and there is no non-loop with both ends in X.

Matching & Cover Parameters: For every graph G, we define the following parameters

- $\alpha(G)$ maximum size of an independent set
- $\alpha'(G)$ maximum size of a matching
- $\beta(G)$ minimum size of a vertex cover
- $\beta'(G)$ minimum size of an edge cover

Observation 3.4 $\alpha(G) + \beta(G) = v(G)$ for every simple graph G.

Proof: A set $X \subseteq V(G)$ is independent if and only if $V(G) \setminus X$ is a vertex cover. Thus, the complement of an independent set of maximum size is a vertex cover of minimum size.

Theorem 3.5 (König, Egerváry) If G is bipartite, then $\alpha'(G) = \beta(G)$.

Proof: It is immediate that $\beta(G) \geq \alpha'(G)$ since for a maximum matching M, any vertex cover must contain at least one endpoint of each edge in M.

Next we shall show that $\beta(G) \leq \alpha'(G)$. Let (A, B) be a bipartition of G, let X be a vertex cover of minimum size, and define two bipartite subgraphs H_1 and H_2 so that H_1 has bipartition $(A \cap X, B \setminus X)$, H_2 has bipartition $(A \setminus X, B \cap X)$, and both H_1 and H_2 have all edges with both ends in their vertex sets.

Suppose (for a contradiction) that there does not exist a matching in H_1 which covers $A \cap X$. Then, by Hall's theorem, there is a subset $Y \subseteq A \cap X$ so that $|N_{H_1}(Y)| < |Y|$. Now, we claim that the set $X' = (X \setminus Y) \cup N_{H_1}(Y)$ is a vertex cover. Let $e \in E(G)$. If e has one end in $B \cap X$, then e is covered by X'. If e has no end in $B \cap X$, then (since X is a vertex cover) e must have one end in $A \cap X$ and the other in $B \setminus X$, so $e \in E(H_1)$. If e does not have an end in Y, then e is covered by $X \setminus Y \subseteq X'$. Otherwise, e is an edge in H_1 with one

end in Y, so its other end is in $N_{H_1}(Y)$ and we again find that e is covered. But then X' is a vertex cover with $|X'| = |X| - |Y| + |N_{H_1}(Y)| < |X|$, giving us a contradiction.

Thus, H_1 has a matching M_1 , which covers $A \cap X$. By a similar argument, H_2 has a matching, M_2 , which covers $B \cap X$. Since these subgraphs have disjoint vertex sets, $M = M_1 \cup M_2$ is a matching of G. Furthermore, $\alpha'(G) \geq |M| = |X| = \beta(G)$. This completes the proof. \square

Isolated Vertex: A vertex v is *isolated* if deg(v) = 0. Note that if G has an isolated vertex, then G does not have an edge cover.

Theorem 3.6 (Gallai) If G has no isolated vertex, then $\alpha'(G) + \beta'(G) = v(G)$.

Proof: First, let M be a maximum matching (so $|M| = \alpha'(G)$). Now, we form an edge cover L from M as follows: For every vertex v not covered by M, choose an edge e incident with v and add e to L. Then L is an edge cover, so $\beta'(G) \leq |L| = |M| + v(G) - 2|M| = v(G) - \alpha'(G)$.

Next, let L be a minimum edge cover (so $|L| = \beta'(G)$) and consider the subgraph H consisting of all the vertices, and those edges in L. Since L is a minimum edge cover, it follows that $L \setminus \{e\}$ is not an edge cover for every $e \in L$. Thus, every edge $e \in E(H)$ must have one endpoint of degree 1 in H. It follows from this that every component of H is isomorphic to a star (a graph of the form $K_{1,m}$ for some positive integer m). Choose a matching $M \subseteq L$ by selecting one edge from each component of H. Then we have $\alpha'(G) \geq |M| = comp(H) = v(G) - |L| = v(G) - \beta'(G)$.

Combining the two inequalities yields $\alpha'(G) + \beta'(G) = v(G)$, as required. \square

Corollary 3.7 If G is a bipartite graph without an isolated vertex, then $\alpha(G) = \beta'(G)$.

Proof: By Observation 3.4 and Theorem 3.6 we have $\alpha(G) + \beta(G) = \alpha'(G) + \beta'(G)$. Now, subtracting the relation $\beta(G) = \alpha'(G)$ proved in Theorem 3.5 we have $\alpha(G) = \beta'(G)$ as desired. \square

Tutte's Theorem

Odd Components: For every graph G, we let odd(G) denote the number of components of G which have an odd number of vertices.

Identification: If $X \subseteq V(G)$, we may form a new graph from G by merging all vertices in X to a single new vertex. If an edge has an endpoint in X, then this edge will have the new vertex as its new endpoint. We say this graph is obtained from G by *identifying* X.

Theorem 3.8 (Tutte) G has a perfect matching if and only if $odd(G-X) \leq |X|$ for every $X \subseteq V(G)$

Proof: The "only if" is immediate: if G has a set $X \subseteq V(G)$ with odd(G - X) > |X|, then G cannot have a perfect matching.

We prove the "if" direction by induction on v(G). As a base, observe that this is trivial when $v(G) \leq 2$. For the inductive step, let G be a graph for which $odd(G - X) \leq |X|$ for every $X \subseteq V(G)$ and assume the theorem holds for all graphs with fewer vertices. Call a set $X \subseteq V(G)$ critical if $odd(G - X) \geq |X| - 1$. We shall establish the theorem in steps.

- (1) v(G) is even

 This follows from $odd(G \emptyset) \le |\emptyset| = 0$.
- (2) If X is critical, then odd(G X) = |X|. This follows from the observation that $|X| + odd(G - X) \cong v(G)$ (modulo 2).
- (3) There is a critical set.
 For instance, ∅ is critical.

Based on (3), we may now choose a maximal critical set X. Let |X| = k and let the odd components of G - X be G_1, \ldots, G_k .

(4) G - X has no even components.

If G - X has an even component G', then choose $v \in V(G')$. Now $X \cup \{v\}$ is critical, contradicting the choice of X.

(5) For every $1 \le i \le k$ and $v \in V(G_i)$, the graph $G_i - v$ has a perfect matching.

If not, then by induction there exists $Y \subseteq V(G_i - v)$ so that $(G_i - v) - Y$ has > |Y| odd components. But then $G \setminus (X \cup Y \cup \{v\})$ has $\geq |X| + |Y|$ odd components, so it is critical again contradicting the maximality of X.

(6) G has a matching M with |M| = k so that M covers X and every G_i has exactly one vertex covered by M.

Construct a graph H from G by identifying $V(G_i)$ to a new vertex y_i for every $1 \le i \le k$ and then deleting every loop and every edge with both ends in X. Now, H is bipartite with bipartition (X,Y) where $Y = \{y_1, \ldots, y_k\}$. Suppose (for a contradiction) that H does not have a perfect matching. Then by Hall's Theorem 3.2 there exists $Y' \subseteq Y$ with $|N_H(Y')| < |Y'|$. Let $X' = N_H(Y')$. Now the graph G - X' has $\ge |Y'| > |X'|$ odd components, giving us a contradiction. So, H has a perfect matching, which proves (6).

It follows from (5) and (6) that G has a perfect matching, as desired. \square

Theorem 3.9 (Tutte-Berge Formula)

$$\alpha'(G) = \frac{1}{2} \left(v(G) - \max_{X \subseteq V(G)} \left(odd(G - X) - |X| \right) \right)$$

Proof: Let $k = \max_{X \subseteq V(G)} (odd(G - X) - |X|)$ and choose $X \subseteq V(G)$ so that k = odd(G - X) - |X|. Note that $k = odd(G - X) - |X| \cong odd(G - X) + |X| \cong v(G)$ (modulo 2). By considering X and odd(G - X) we find that every matching of G must not cover $\geq k$ vertices, so $\alpha'(G) \leq \frac{1}{2}(v(G) - k)$.

To prove the other inequality, we construct a new graph G' from G by adding a set Y of k new vertices to G each adjacent to every other vertex. Let $Z' \subseteq V(G')$. We claim that $odd(G'-Z') \leq |Z'|$. If $Z' = \emptyset$, then this follows from the observation that $k \cong v(G)$ (modulo 2). If $Y \not\subseteq Z'$, then G' - Z' is connected, so $|Z'| \geq 1 \geq odd(G' - Z')$. Finally, if $Y \subseteq Z'$, then we have

$$odd(G' - Z') = odd(G - Z) \le k + |Z| = |Y| + |Z| = |Z'|.$$

Since Z' was arbitrary, Tutte's Theorem 3.8 shows that G' has a perfect matching, and it follows that G has a matching covering all but k vertices, so $\alpha'(G) \geq \frac{1}{2}(v(G)-k)$ as required. \Box

Theorem 3.10 (Petersen) If every vertex of G has degree 3 and G has no cut-edge, then G has a perfect matching.

Proof: We shall show that G satisfies the condition for Tutte's Theorem. Let $X \subseteq V(G)$, let G_1, \ldots, G_k be the odd components of G - X, and for every $1 \le i \le k$ let S_i be the set

of edges with one end in X and the other in $V(G_i)$. Now, for every $1 \leq i \leq G_i$, we have $3v(G_i) = \sum_{v \in V(G_i)} deg_G(v) = |S_i| + 2e(G_i)$. Since $v(G_i)$ is odd, it follows that $|S_i|$ must also be odd. By our assumptions, $|S_i| \neq 1$, so we conclude that $|S_i| \geq 3$.

Now, form a new graph H from G by deleting every vertex in every even component of G-X, then identifying every G_i to a single new vertex y_i , and then deleting every loop and every edge with both ends in X. This graph H is bipartite with bipartition (X,Y) where $Y = \{y_1, \ldots, y_k\}$. Furthermore, by our assumptions, every vertex in Y has degree ≥ 3 and every vertex in X has degree ≤ 3 . Thus, we have

$$3|X| \ge \sum_{x \in X} deg_H(x) = e(H) = \sum_{y \in Y} deg_H(y) \ge 3|Y|.$$

So, $|X| \ge |Y| = k = odd(G - X)$. Since X was arbitrary, it follows from Tutte's Theorem 3.8 that G has a perfect matching.