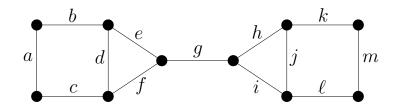
Midterm Solutions

Math 345, Graph Theory I

Instructor: Matt DeVos

Name (print):		
Signature:		

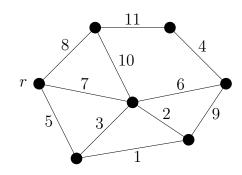
Problem	Score	Value
1		3
2		3
3		6
4		6
5		8
6		4
7		10
8		4
9		6
Total:		50



- 1. (3 points) Find a maximum matching in the above graph.
 - $a,\,d,\,g,\,j,\,m$ (other solutions are possible).

2. (3 points) Find a maximal matching in the above graph which is not maximum. a, e, h, m (other solutions are possible).

Consider the following weighted graph.



3. (6 points) If we use Kruskal's algorithm to choose a min cost tree, what is the sequence of edge weights we select?

1, 2, 4, 5, 6, 8

4. $(6 \ points)$ If we use Dijkstra's algorithm to choose a shortest path tree for the vertex r in this graph, what is the sequence of edge weights we select?

5, 1, 7, 8, 6, 4

5. (8 points) Prove that every simple k-regular graph without a cycle of length 3 has a path of length at least 2k - 1. (hint: maximal path)

Choose a maximal path P and assume P has vertex sequence v_1, v_2, \ldots, v_n . By maximality, all neighbours of v_1 must be in the set $\{v_2, \ldots, v_n\}$. Furthermore, whenever v_i is a neighbour of v_1 with i > 2 it must be that v_{i-1} is not a neighbour of v_1 as otherwise v_1, v_i, v_{i-1} would form a triangle. It follows from this that $n \ge 2k$ so P has length at least 2k - 1 as desired.

6. (4 points) Find a simple k-regular graph without a triangle for which the longest path has length 2k-1 (hint: look for a triangle-free graph with few vertices)

For every $k \ge 1$ the graph $K_{k,k}$ is simple, k-regular, and has no path of length greater than 2k-1 (since it has only 2k vertices).

7. (10 points) Let T_1 and T_2 be spanning trees of G with $T_1 \neq T_2$. Prove that there exists $e \in E(T_1) \setminus E(T_2)$ and $f \in E(T_2) \setminus E(T_1)$ so that both $T_1 - e + f$ and $T_2 - f + e$ are spanning trees.

Choose $e \in E(T_1) \setminus E(T_2)$ and let C be the fundamental cycle of e with respect to T_2 . Let u, v be the ends of e and observe that the subgraph $T_1 - e$ has exactly two components, H_1, H_2 and we may assume (without loss) that $u \in V(H_1)$ and $v \in V(H_2)$. Now, C - e is a path from u to v, so there must exist an edge $f \in E(C - e)$ so that f has one end in H_1 and the other in H_2 . It now follows that both $T_1 - e + f$ and $T_2 + e - f$ are spanning trees, as desired. 8. (4 points) Let G be a bipartite graph with bipartition (A, B) and assume that every $X \subseteq A$ satisfies $|N(X)| \ge |X|$. Define a set $X \subseteq A$ to be tight if |N(X)| = |X|. Prove that whenever $X, X' \subseteq A$ are tight then $X \cap X'$ is also tight.

The key observation is the following inequality which holds for all $X, X' \subseteq A$:

$$|N(X \cap X')| + |N(X \cup X')| \le |N(X)| + |N(X')|$$

If X and X' are tight then using this we find

$$|N(X \cap X')| + |N(X \cup X')| \le |N(X)| + |N(X')| = |X| + |X'| = |X \cap X'| + |X \cup X'|$$

and since $|N(X \cap X')| \ge |X \cap X'|$ and $|N(X \cup X')| \ge |X \cup X'|$ we must then have that both $X \cap X'$ and $X \cup X'$ are tight.

9. (6 points) Use the previous problem to give a new proof of Hall's Marriage Theorem by induction on |A|. (hint: let $x \in A$ and try to find a good vertex to pair with x).

If there is no tight set, then let $x \in A$, choose $y \in N(x)$ and set $G' = G - \{x, y\}$. Now for every $X \subseteq V(G')$ we have $|N_{G'}(X)| \ge |N_G(X)| - 1 \ge |X|$ so by induction, G' has a matching covering $A - \{x\}$ and then adding xy to this yields a matching covering A.

Next suppose that a tight set exists, and choose a minimal tight set X^* . Let $x \in X^*$ and let $y \in N(X^*)$ and set $G' = G - \{x, y\}$. Let $X \subseteq V(G')$ and suppose (for a contradiction) that $|N_{G'}(X)| < |X|$. We must have $|N_G(X)| = |X|$, so X is tight (in the original graph). Since $y \in N(X^*) \cap N(X)$, we must have $X \cap X^* \neq \emptyset$ (otherwise $X \cup X^*$ would violate our condition). However, then $X \cap X^*$ is tight (by the above problem) and it is a proper subset of X^* and this contradicts our choice.