
9 The Polynomial Method

Our main goal here is to introduce a very simple and useful tool for solving certain types of

combinatorial problems. The main idea is due to Alon and Tarsi, and uses only very basic

properties of polynomials to achieve some surprisingly powerful results. We will first use this

technique to get a new proof of the Cauchy-Davenport Theorem. Then, we will generalize

this proof to achieve a result on a type of restricted sumset problem. If G is an abelian group

and A, B ⊆ G, then we let A ⊕ B = {a + b : a ∈ A, b ∈ B, and a 6= b}. Our main result

from this section is the following theorem on restricted sumsets as conjectured by Erdös and

Heilbron.

Theorem 9.1 (Dias da Silva, Hamidoune) Let p be prime and let A ⊆ Zp be nonempty.

Then |A⊕ A| ≥ min{p, 2|A| − 3}.

We begin with a quick review of polynomials. Throughout we will fix a finite field

F of order q, and we will use F[x1, x2, . . . , xn] to denote the ring of polynomials over F
with variables x1, x2, . . . , xn (so members of F[x1, . . . , xn] are formal linear combinations of

monomials xd1
1 . . . xdn

n with coefficients in F). Every polynomial in this ring gives rise to a

mapping from Fn to F, and we call two polynomials P, Q ∈ F[x1, . . . , xn] equivalent if they

give the same mapping.

Proposition 9.2 Let B = {xd1
1 xd2

2 . . . xdn
n ∈ F[x1, . . . , xn] : di < q for 1 ≤ i ≤ n}. Then B

is a basis of the F-linear space of functions from Fn to F. In particular, two polynomials

P, Q ∈ F[x1, . . . , xn] are equivalent if and only if they reduce to the same polynomial by

repeatedly using the rewrite rule xq
i = xi

Proof: If z1, z2, . . . , zn ∈ F, then the polynomial
∏n

i=1(1 − (xi − zi)
q−1) has value 1 at

(z1, . . . , zn) and 0 elsewhere. Further, by expanding, this polynomial may be written as a

linear combination of elements from B. Since every function may be expressed as a linear

combination of such terms, it follows that every function from Fn to F may be written as a

linear combination of members of B. Since |B| = qn and the dimension of the F-linear space

of functions from Fn to F also has dimension qn, we find that B is a basis as required.

Since F has order q, the multiplicative group F \ {0} has order q − 1, and it follows

that every z ∈ F satisfies zq = z. By writing a polynomial P ∈ F[x1, . . . , xn] as a sum of
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monomials and then using the rewrite rule xq
i = xi, we reduce P to a linear combination of

terms from B and the result follows. �

If d1, d2, . . . , dn < q, then we define the degree of the monomial xd1
1 . . . xdn

n to be
∑n

i=1 di.

More generally, by the above proposition, every polynomial function P may be expressed

uniquely as a linear combination of terms from B, and we define the degree of P to be the

largest degree of a term in the support of in this representation.

Theorem 9.3 (Alon, Tarsi) Let P ∈ F[x1, . . . , xn], and let xd1
1 . . . xdn

n have degree equal

to the degree of P , and assume that xd1
1 . . . xdn

n appears in the expansion of P with nonzero

coefficient. If A1, A2, . . . , An ⊆ F satisfy |Ai| ≥ di + 1, then there exists (z1, z2, . . . , zn) ∈
A1 × A2 . . .× An so that P (z1, z2, . . . , zn) 6= 0.

Proof: Let d be the degree of P which is also equal to
∑n

i=1 di. We may assume without loss

that |Ai| = di + 1 for every 1 ≤ i ≤ n and we set Bi = F \ Ai. Using the rewrite rule in the

above proposition, we may assume that P is expressed as a linear combination of monomials

in B. Now, consider the following polynomial

Q(x1, . . . , xn) = P (x1, . . . , xn) ·
n∏

i=1

∏
z∈Bi

(xi − z).

It is immediate from this construction that Q is not identically 0 if and only if there exists

(z1, . . . , zn) ∈ A1× . . .×An with P (z1, . . . , zn) 6= 0. Thus, to complete the proof, it suffices to

show that Q is not identically 0. To see that Q is nonzero, consider the term xq−1
1 xq−1

2 . . . xq−1
n

in the expansion of Q. Since P is written as a linear combination of monomials with degree

< q in each variable and total degree ≤ d, every monomial xd1
1 xd2

2 . . . xdn
n appearing in the

expansion of Q has
∑n

i=1 di ≤ (q − 1)n. It follows from this that after reducing, the only

contribution to the coefficient of xq−1
1 . . . xq−1

n comes from the term xd1
1 . . . xdn

n in P and is

nonzero. Thus, Q is not identically 0 and the proof is complete. �

The above result also holds without the assumption that F is finite. The proof of this

more general result is quite instructive and the interested reader is encouraged to see Alon’s

excellent survey article ”Combinatorial Nullstellensatz” for a proof of this, and many appli-

cations. Our first application will be a new proof of the Cauchy-Davenport Theorem.
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Theorem 9.4 (Cauchy-Davenport) If p is prime and A, B ⊆ Zp are nonempty, then

|A + B| ≥ min{p, |A|+ |B| − 1}.

Proof: Let A, B be a counterexample to the theorem with |A| + |B| minimum and set

k = |A| and ` = |B|. Note that by minimality, we must have k + ` ≤ p + 1. Now choose a

set C ⊇ A + B with |C| = k + `− 2 and consider the following polynomial in two variables

P (x, y) =
∏
c∈C

(x + y − c).

The degree of P is k + `− 2 and the coefficient of the term xk−1y`−1 in the expansion of P

is equal to
(

k+`−2
k−1

)
6= 0. Applying the previous theorem to this polynomial for the sets A, B

gives us a pair a ∈ A and b ∈ B with P (a, b) 6= 0. But then a + b 6∈ C ⊇ A + B, giving us a

contradiction. �

This alternate proof of Cauchy-Davenport is quite useful since it leads to numerous

generalizations which do not obviously follow from the original proof. Perhaps the most

interesting of these is the following.

Theorem 9.5 (Alon, Nathanson, Ruzsa) Let p be prime, let A, B ⊆ Zp and assume

that |A| 6= |B|. Then |A⊕B| ≥ min{p, |A|+ |B| − 2}.

Proof: Let A, B be a counterexample to the above theorem with |A| + |B| minimum and

let k = |A| and ` = |B|. We may assume that 2 ≤ k ≤ `. By the minimality of our

counterexample, we may further assume that k + `− 2 ≤ p (otherwise remove an element of

A). Now, choose a set C ⊇ A⊕B with |C| = k+`−3 and consider the following polynomial.

P (x, y) = (x− y)
∏
c∈C

(x + y − c).

The coefficient of xk−1y`−1 is equal to(
k + `− 3

k − 2

)
−

(
k + `− 3

k − 1

)
=

(k − `)(k + `− 3)!

(k − 1)!(`− 1)!

which is nonzero modulo p. By applying Theorem 9.3 to this polynomial for the sets A

and B we find that there exist a ∈ A and b ∈ B with P (a, b) 6= 0. But then a 6= b and

a + b 6∈ C ⊇ A⊕B and we have a contradiction. �
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This gives us an easy proof of the Dias da Silva - Hamidoune Theorem as follows.

Proof of Theorem 9.1: If |A| = 1 there is nothing to prove. Otherwise choose a ∈ A and set

A′ = A \ {a}. Now by the previous theorem we have |A⊕A| ≥ |A⊕A′| ≥ min{p, 2|A| − 3}
as required. �

As in the preceeding results in this section, the tool is very simple to prove, but is still

quite useful. Our main application of this tool is a lemma due to Alon called the Permanent

Lemma, which has found application in graph theory as well as additive number theory.

Lemma 9.6 (Alon’s Permanent Lemma) Let M be an n × n matrix over F and as-

sume that perm(M) 6= 0. If A1, A2, . . . , An ⊆ F and |Ai| = 2 for every 1 ≤ i ≤ n and

z1, z2, . . . , zn ∈ F, then there exists a vector a = (a1, a2, . . . , an) ∈ A1 × . . .× An so that the

ith coordinate of Ma is not equal to zi for every 1 ≤ i ≤ n.

Proof: Let M = {mi,j} and consider the following polynomial

P (x1, . . . , xn) =
n∏

i=1

(mi,1x1 + mi,2x2 + . . . mi,nxn − zi).

The coefficient of x1x2 . . . xn in the expansion of P is equal to the permanent of M which is

nonzero. Thus, by Theorem 9.3 there exists a vector a = (a1, . . . , an) ∈ A1 × . . .× An with

P (a1, . . . , an) 6= 0, but then by construction, the ith coordinate of Ma is not equal to zi for

every 1 ≤ i ≤ n. �

Next we will use the Permanent Lemma to get another proof of the Erdös Ginzburg Ziv

theorem for Zp. This proof is similar to that of Proposition 5.3, but uses the Permanent

Lemma instead of Cauchy-Davenport.

Theorem 9.7 (Erdös, Ginzburg, Ziv) If β is a sequence in Zp of length 2p − 1, then

there is a subsequence of β of length p with sum 0.

Proof: Let β be given by b1, b2, . . . , b2p−1. Identify the elements of Zp with the representatives

0, 1, . . . , p−1 as usual. By possibly reordering our sequence, we may assume that b1 ≤ b2 . . . ≤
b2p−1. If there exists 1 ≤ i ≤ p− 1 so that bi = bp−1+i then some element occurs p times and

this subsequence has zero sum. Otherwise, let M be the (p−1)×(p−1) matrix over Zp with all
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entries 1 and let z = (z1, z2, . . . , zp−1) be a list of all elements in Zp \−b2p−1. By the previous

lemma we may choose a vector a = (a1, . . . , ap−1) ∈ {b1, bp} × {b2, bp+1} . . . × {bp−1, b2p−2}
so that Ma and z have no coordinates equal. But then by construction, a1, a2, . . . , ap−1 is a

subsequence of b1, . . . , b2p−2 with sum equal to −b2p−1 so appending the term b2p−1 gives us

the desired subsequence. �

Conjecture 9.8 (Jaeger) If M is an invertible matrix over a finite field with order > 3,

then there exist a pair of vectors x, y with Mx = y so that x and y have no coordinates equal

to zero.

Since permanents and determinants are the same over fields of characteristic two, the

Permanent Lemma implies the truth of Jaeger’s conjecture over all such fields. More gener-

ally, Alon and Tarsi have shown that Jaeger’s conjecture holds over all fields with order not

equal to a prime.


