
11 Block Designs

Linear Spaces

In this section we consider incidence structures I = (V ,B,∼). By convention, we shall

always let v = |V| and b = |B|.

Linear Space: We say that an incidence structure (V ,B,∼) is a linear space if every line

contains at least two points and every pair of points are contained in exactly one line.

Theorem 11.1 (De Bruijn & Erdös) For every linear space either b = 1 or b ≥ v. Fur-

ther, equality implies that for any two lines there is exactly one point contained in both.

Proof: For any point x ∈ V we let rx denote the number of blocks incident with x and for

any line B ∈ B we let k` denote the number of points contained in B. Assume there is more

than one line and let x ∈ V and B ∈ B satisfy x 6∈ B. Then rx ≥ kB since there are kB lines

joining x to the points in B. If we suppose that b ≤ v then b(v − kB) ≥ v(b− rx) and thus

1 =
∑
x∈V

∑
B 63x

1

v(b− rx)
≥
∑
B∈B

∑
x 6∈B

1

b(v − kB)
= 1

Now we must have equality in the above equation, so v = b and rx = kB if x 6∈ B. �

Designs

Designs: Let v, k, t, λ satisfy v ≥ k ≥ t ≥ 0 and λ ≥ 1. A t-(v, k, λ) design, also called a

Sλ(t, k, v) is an incidence structure (V ,B,∼) which satisfies:

(i) |V| = v

(ii) |B| = k for every B ∈ B.

(iii) For every set T ⊆ V with |T | = t there are exactly λ blocks containing all points in T .

We call k the block size and λ the index. We say that a t-(v, k, λ) design is a t-design for

short. Although we shall not use the term, it is common to call a 2-design a Balanced

Incomplete Block Design (BIBD).
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Examples:

1. The vertices and edges of Kn form a 2-(n, 2, 1) design.

2. Every projective plane of order n is a 2-(n2 + n+ 1, n+ 1, 1) design.

3. Every affine plane of order n is a 2-(n2, n, 1) design.

4. Let H be a Hadamard matrix of order 4k where every entry in the first row is + and

let V be the columns of this matrix. Now each row other than the first has 2k copies of

+ and 2k copies of − so this determines two subsets of V of size 2k each of which we

define to be a block. This yields a 3-(4k, 2k, k− 1) design called a Hadamard 3-design.

To see this, note that for any three columns we can normalize the first to be all +,

then it follows from the orthogonality relations that the patterns ++,+−,−+,−− are

equally likely over the other two columns.

5. Let the group G act t-homogeneously on the set V and let B ⊆ V satisfy |B| ≥ t.

Setting B = BG = {g(B) : g ∈ G} yields a t-design.

Proposition 11.2 Let J ⊆ V satisfy |J | = j ≤ t. Then the number of blocks containing J

is

bj = λ

(
v − j
t− j

)
/

(
k − j
t− j

)
(which depends only on |J |). In particular, every t-design is also a j-design for all j ≤ t.

Proof: If bj is the number of blocks containing J , then counting the number of pairs (T,B)

with B ∈ B and J ⊆ T ⊆ B with |T | = t in two ways we find bj
(
k−j
t−j

)
=
(
v−j
t−j

)
λ. �

Corollary 11.3 The number of blocks in a t-(v, k, λ) design is

b = b0 = λ

(
v

t

)
/

(
k

t

)
Replication Number: The replication number, denoted r = b1, is the number of blocks

which contain a fixed vertex.
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Corollary 11.4 For every 2-design

(i) bk = vr

(ii) λ(v − 1) = r(k − 1)

Proof: Counting the number of incident pairs (x,B) where x ∈ V and B ∈ B in two ways

yields (i). For (ii) simply apply the previous proposition with t = 2 and j = 1. �

Steiner Systems: We let S(t, k, v) = S1(t, k, v) and call such designs Steiner Systems. A

Steiner Triple System is a S(2, 3, v) and we refer to such designs as STS(v).

Theorem 11.5 A STS(v) exists if and only if v ≡ 1, 3 (mod 6).

Proof: First suppose that a STS(v) exists. Then it follows from (ii) of Corollary 11.4 that

v − 1 = 2r (so v is odd) and then from (i) of the same corollary that 3b = vr = v(v−1)
2

so

either v or v − 1 is a multiple of 3. Thus v ≡ 1, 3 (mod 6) as desired.

The proof of the other direction is constructive, and we do just the case v ≡ 3 (mod 6).

Let v = 6t + 3 and set n = 2t + 1. We set V = Zn × Z3. Now, for every x ∈ Zn we

let {(x, 0), (x, 1), (x, 2)} be a block and whenever x, y ∈ Zn with x 6= y and i ∈ Z3 we let

{(x, i), (y, i), (1
2
(x+ y), i+ 1)} be a block.

Incidence Matrix: If I = (V ,B,∼) is an incidence structure, the associated incidence

matrix is the matrix N indexed by V × B with the property that the (x,B) entry is 1 if

x ∈ B and 0 otherwise.

Observation 11.6 If N is the incidence matrix of a 2-design then

NN> = (r − λ)I + λJ

Theorem 11.7 (Fisher’s Inequality) Every 2-(v, k, λ) design with v > k satisfies b ≥ v.

Proof: It follows from (ii) of Corollary 11.4 and v > k that r > λ. Since J has one eigenvalue

v and all others 0, the matrix (r−λ)I +λJ has one eigenvalue r−λ+λv = rk and all other

eigenvalues r − λ. It follows that NN> is invertible, so b ≥ v. �

Square Design: We say that a design is square if v = b. This is usually given the unfortu-

nate term: symmetric design. Note that if a design is square, then it follows from Corollary

11.4 that r = k.
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Corollary 11.8 For every square (symmetric) 2-design with v even, k − λ is a square.

Proof: Setting N to be the incidence matrix and using the eigenvalue argument from Fisher’s

Inequality we have

(detN)2 = det(NN>) = (r − λ)v−1(rk) = (k − λ)v−1k2

Now, since v − 1 is odd, it must be that k − λ is a square. �

Bruck-Ryser-Chowla

Theorem 11.9 (Bruck-Ryser-Chowla) For every square (symmetric) 2-design with v

odd, the following equation has a nonzero integral solution:

z2 = (k − λ)x2 + (−1)(v−1)/2λy2

Proof: Let N = {nij}1≤i,j≤v be the incidence matrix of the design and let x = (x1, x2, . . . , xv)

be a vector of variables. We define the linear forms Li =
∑v

j=1 nijxj (so Li is the ith entry

of Nx. Setting m = k − λ we have NN> = mI + λJ . Multiplying on the left by x> and on

the right by x yields the following equation:

L2
1 + L2

2 . . .+ L2
v = m(x2

1 + x2
2 + . . . x2

v) + λ(x1 + x2 . . .+ xv)
2 (1)

Now, express m as m = a2
1 + a2

2 + a2
3 + a2

4 and consider the four variables x1, x2, x3, x4. Using

the quaternions, we let

y1 + y2i+ y3j + y4k = (a1 + a2i+ a3j + a4k)(x1 + x2i+ x3j + x4k)

so each ys is linear in the variables x1 . . . x4 and y2
1 +y2

2 +y2
3 +y2

4 = m(x2
1 +x2

2 +x2
3 +x2

4). Now,

assume that v ≡ 1 (mod 4) and repeat this process four variables at a time by introducing new

variables y4s+1, y4s+2, y4s+3, y4s+4 which are linear in x4s+1, x4s+2, x4s+3, x4s+4. Now, adding a

new variable w = x1 + x2 + . . . xv permits us to rewrite the above equation as

L2
1 + L2

2 + . . . L2
v = y2

1 + y2
2 + . . . y2

v−1 +mx2
v + λw2

Since the product structure on the quaternions is invertible, we can express x1, x2, . . . , xv−1 as

linear forms in y1, y2, . . . , yv−1. If the linear form L1 expressed in terms of y1, y2, . . . , yv−1, xv



5

does not have coefficient 1 for y1 then set L1 = y1 and use this to solve for y1 in terms of

the remaining variables yt and xv. Otherwise, we set L1 = −y1 and use this to solve for y1

in terms of the remaining variables. In either case we can now rewrite our equation as

L2
2 + . . . L2

v = y2
2 + . . . y2

v−1 +mx2
v + λw2

(where we update w to be a linear combination of the new variables yt and xv). Continuing

in this manner for y2, . . . yv−1 we can reduce the original equation to

L2
v = mx2

v + λw2

Where both Lv and w are rational multiples of xv. Multiplying through by a common

denominator brings us an integer equation of the form

z2 = (k − λ)x2 + λy2

as desired. The case when v ≡ 3 (mod 4) is handled in a similar manner. We introduce a

new variable xv+1 and add mx2
v+1 to both sides of equation (1). Now our reductions bring

us to

mx2
v+1 = y2

v+1 + λw2

and then multiplying by a common denominator yields the desired result. �

The Small Witt Design

W12: Let Ω = PG(1,F11) = F11 ∪ {∞} and let B = Fq ∪ {∞} = {1, 3, 4, 5, 9,∞}. Now we

define the Small Witt Design, W12, to be the incidence structure with point set Ω and blocks

{g(B) : g ∈ PSL(2, 11)} (with the natural containment as incidence).

A Matthieu Group: We define M12 = Aut(W12).

Theorem 11.10 M12 acts sharply 5-transitively on the points of W12.

Complements: Note that the map φ given by φ(s) = −1
s
∈ PSL(2, 11). Furthermore,

φ(B) = {0, 2, 6, 7, 8, X} (here we use X instead of 10). Since φ(B) and B are complementary

subsets of F11 ∪ {∞}, it follows that the complement of every block of W12 is another block

of W12.
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3-Homogeneous: Note that PSL(2, 11) acts 3-homogeneously on F11 ∪ {∞}.

Distinguishing {∞,0,1}: Since W12 is 3-homogenous, every three element set is equivalent

under the symmetry group, and we may (without loss) distinguish the three element set

{∞, 0, 1}. If we do so, we find that the remaining points form a structure isomorphic to

AG(2, 3) as follows:

3 5 2

7 X 6

4 8 9

Figure 1: Our AG(2, 3)

The Blocks of W12: The following table indicates some of the types of blocks B in W12

relative to their intersection with {∞, 0, 1}. Here the lines of our AG(2, 3) are indicated in

the figure, and fall into the four parallel classes which we denote as follows:

the parallel class of {7, X, 6}
| the parallel class of {5, X, 8}
� the parallel class of {4, X, 2}
� the parallel class of {3, X, 9}

B ∩ {∞,0,1} Description of block B

{∞, 0, 1} The union of {∞, 0, 1} with a line in our AG(2, 3).

∅ The union of two parallel lines in our AG(2, 3).

{∞} The union of {∞} with two lines in our AG(2, 3) with

parallel types either { , |} or {�,�}.
{0} The union of {0} with two lines in our AG(2, 3) with

parallel types either { ,�} or {|,�}.
{1} The union of {1} with two lines in our AG(2, 3) with

parallel types either { ,�} or {|,�}.
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Note that although we have not explicitly listed the types of blocks whose intersection with

{∞, 0, 1} has size two, each such block is a complement of one that we have listed. In the

figure below, we have labelled an edge with ∞, 0, 1 if the union of two edges from these

parallel classes with the given label form a block.

00
1

1

∞

∞

Figure 2: Edge-Colouring of Slopes

Fixing {∞, 0, 1}: Let φ be an automorphism of our AG(2, 3). Now, φ gives a permutation

of the four parallel classes , |, �, and � and thus permutes the perfect matchings of the

graph in the above figure. Since these perfect matchings are labelled with either ∞, 0, 1 it

follows that φ also induces a permutation of {∞, 0, 1}. It then follows from our table of

block structures that extending φ by this permutation of {∞, 0, 1} gives an automorphism

of W12. Thus

G{∞,0,1} ∼= Aut(AG(2, 3)) ∼= AGL(2, 3).

Coordinates: We now equip our AG(2, 3) with coordinates by assigning X to be (0, 0) (the

origin) and assigning each other point a vector (a, b) where a, b ∈ {−1, 0, 1} according to

their position in Figure 1. So, for instance 3 = (−1,−1). Note that this gives coordinates to

our parallel classes as well: is the set of lines parallel to (0, 1), | is the set of lines parallel

to (1, 0), � is the set of lines parallel to (1, 1) and � is the set of lines parallel to (1,−1).

3-transitivity: Consider the automorphism φ ofGL(2, 3) given by

[
x

y

]
→
[

1 1

0 1

][
x

y

]
.

This fixes the parallel class (1, 0) but permutes the other three cyclically. It follows that φ

extends to an automorphism of W12 which permutes ∞, 0, 1 cyclically. The automorphism

ψ of GL(2, 3) given by

[
x

y

]
→
[

0 1

1 0

][
x

y

]
fixes the parallel classes (1, 1) and (1,−1)

but interchanges (0, 1) and (1, 0). It follows that ψ extends to an automorphism of W12
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which fixes 1 but interchanges 0,∞. Together, these two automorphisms show that G{∞,0,1}

acts 3-transitively on {∞, 0, 1}. It now follows from the 3-homogeneousness of G that G is

3-transitive.

4-transitivity: The group of translations of AG(2, 3) act transitively on the points, and

do not change any of the slopes. It follows that any translation of AG(2, 3) extends to an

automorphism of W12 which fixes ∞, 0, 1. It follows from this that G acts 4-transitively.

5-transitivity: Now we restrict our attention to those elements of G which fix ∞, 0, 1, X.

These are elements of AGL(2, 3) which fix the origin X (so have the form ~x→ A~x for some

A ∈ GL(2, 3)) and permute the four slopes according to the cycle pattern (··)(··). All of the

following matrices have this property:

±
[

1 0

0 1

]
±
[

0 −1

1 0

]
±
[
−1 1

1 1

]
±
[

1 1

−1 1

]

Naming the matrices above as ±1,±i,±j,±k we see that these four matrices form a multi-

plicative subgroup which is isomorphic to the finite quaternion group. If we group each of

the elements in F2
3 \ {0} into pairs of opposite elements:

{±(1, 0)}, {±(0, 1)}, {±(1, 1)}, {±(−1, 1)}

We see that each of i, j, k acts on the above pairs with cycle pattern (··)(··) in all three possible

ways. Since the −1 matrix takes each element to its opposite, it then follows that this group

of 8 matrices acts transitively on the 8 points of F2
3 \ {0}. Thus, G acts 5-transitively.

Sharp 5-transitivity: We have from above that |G{∞,0,1}| = |AGL(3, 2)| = 48 · 9 = 2433

and then |G(∞,0,1)| = 2332, |G(∞,0,1,X)| = 23 and |G(infty,0,1,X,2)| = 1. Thus G acts sharply

5-transitively on PG(1,F11).

Note: Consider a block B of W12 and the subgroup of automorphisms which fix B. It

follows immediately from the sharp 5-transitivity that this subgroup is isomorphic to S6.

However, an automorphism which fixes four elements in B and interchanges the other two

cannot yield a similarly structured permutation on its complement. It follows that the action

of this subgroup on B and its complement are related by an outer automorphism of S6.


