11 Block Designs

Linear Spaces

In this section we consider incidence structures $\mathcal{I}=(\mathcal{V}, \mathcal{B}, \sim)$. By convention, we shall always let $v=|\mathcal{V}|$ and $b=|\mathcal{B}|$.

Linear Space: We say that an incidence structure $(\mathcal{V}, \mathcal{B}, \sim)$ is a linear space if every line contains at least two points and every pair of points are contained in exactly one line.

Theorem 11.1 (De Bruijn \& Erdös) For every linear space either $b=1$ or $b \geq v$. Further, equality implies that for any two lines there is exactly one point contained in both.

Proof: For any point $x \in \mathcal{V}$ we let r_{x} denote the number of blocks incident with x and for any line $B \in \mathcal{B}$ we let k_{ℓ} denote the number of points contained in B. Assume there is more than one line and let $x \in \mathcal{V}$ and $B \in \mathcal{B}$ satisfy $x \notin B$. Then $r_{x} \geq k_{B}$ since there are k_{B} lines joining x to the points in B. If we suppose that $b \leq v$ then $b\left(v-k_{B}\right) \geq v\left(b-r_{x}\right)$ and thus

$$
1=\sum_{x \in \mathcal{V}} \sum_{B \ngtr x} \frac{1}{v\left(b-r_{x}\right)} \geq \sum_{B \in \mathcal{B}} \sum_{x \notin B} \frac{1}{b\left(v-k_{B}\right)}=1
$$

Now we must have equality in the above equation, so $v=b$ and $r_{x}=k_{B}$ if $x \notin B$.

Designs

Designs: Let v, k, t, λ satisfy $v \geq k \geq t \geq 0$ and $\lambda \geq 1$. A $t-(v, k, \lambda)$ design, also called a $S_{\lambda}(t, k, v)$ is an incidence structure $(\mathcal{V}, \mathcal{B}, \sim)$ which satisfies:
(i) $|\mathcal{V}|=v$
(ii) $|B|=k$ for every $B \in \mathcal{B}$.
(iii) For every set $T \subseteq \mathcal{V}$ with $|T|=t$ there are exactly λ blocks containing all points in T.

We call k the block size and λ the index. We say that a $t-(v, k, \lambda)$ design is a t-design for short. Although we shall not use the term, it is common to call a 2-design a Balanced Incomplete Block Design (BIBD).

Examples:

1. The vertices and edges of K_{n} form a 2- $(n, 2,1)$ design.
2. Every projective plane of order n is a $2-\left(n^{2}+n+1, n+1,1\right)$ design.
3. Every affine plane of order n is a $2-\left(n^{2}, n, 1\right)$ design.
4. Let H be a Hadamard matrix of order $4 k$ where every entry in the first row is + and let \mathcal{V} be the columns of this matrix. Now each row other than the first has $2 k$ copies of + and $2 k$ copies of - so this determines two subsets of \mathcal{V} of size $2 k$ each of which we define to be a block. This yields a $3-(4 k, 2 k, k-1)$ design called a Hadamard 3-design. To see this, note that for any three columns we can normalize the first to be all + , then it follows from the orthogonality relations that the patterns,,,+++--+-- are equally likely over the other two columns.
5. Let the group G act t-homogeneously on the set \mathcal{V} and let $B \subseteq \mathcal{V}$ satisfy $|B| \geq t$. Setting $\mathcal{B}=B^{G}=\{g(B): g \in G\}$ yields a t-design.

Proposition 11.2 Let $J \subseteq \mathcal{V}$ satisfy $|J|=j \leq t$. Then the number of blocks containing J is

$$
b_{j}=\lambda\binom{v-j}{t-j} /\binom{k-j}{t-j}
$$

(which depends only on $|J|$). In particular, every t-design is also a j-design for all $j \leq t$.
Proof: If b_{j} is the number of blocks containing J, then counting the number of pairs (T, B) with $B \in \mathcal{B}$ and $J \subseteq T \subseteq B$ with $|T|=t$ in two ways we find $b_{j}\binom{k-j}{t-j}=\binom{v-j}{t-j} \lambda$.

Corollary 11.3 The number of blocks in a $t-(v, k, \lambda)$ design is

$$
b=b_{0}=\lambda\binom{v}{t} /\binom{k}{t}
$$

Replication Number: The replication number, denoted $r=b_{1}$, is the number of blocks which contain a fixed vertex.

Corollary 11.4 For every 2-design
(i) $\quad b k=v r$
(ii) $\lambda(v-1)=r(k-1)$

Proof: Counting the number of incident pairs (x, B) where $x \in \mathcal{V}$ and $B \in \mathcal{B}$ in two ways yields (i). For (ii) simply apply the previous proposition with $t=2$ and $j=1$.

Steiner Systems: We let $S(t, k, v)=S_{1}(t, k, v)$ and call such designs Steiner Systems. A Steiner Triple System is a $S(2,3, v)$ and we refer to such designs as $S T S(v)$.

Theorem 11.5 A STS (v) exists if and only if $v \equiv 1,3(\bmod 6)$.
Proof: First suppose that a $S T S(v)$ exists. Then it follows from (ii) of Corollary 11.4 that $v-1=2 r$ (so v is odd) and then from (i) of the same corollary that $3 b=v r=\frac{v(v-1)}{2}$ so either v or $v-1$ is a multiple of 3 . Thus $v \equiv 1,3(\bmod 6)$ as desired.

The proof of the other direction is constructive, and we do just the case $v \equiv 3(\bmod 6)$. Let $v=6 t+3$ and set $n=2 t+1$. We set $\mathcal{V}=\mathbb{Z}_{n} \times \mathbb{Z}_{3}$. Now, for every $x \in \mathbb{Z}_{n}$ we let $\{(x, 0),(x, 1),(x, 2)\}$ be a block and whenever $x, y \in \mathbb{Z}_{n}$ with $x \neq y$ and $i \in \mathbb{Z}_{3}$ we let $\left\{(x, i),(y, i),\left(\frac{1}{2}(x+y), i+1\right)\right\}$ be a block.

Incidence Matrix: If $\mathcal{I}=(\mathcal{V}, \mathcal{B}, \sim)$ is an incidence structure, the associated incidence matrix is the matrix N indexed by $\mathcal{V} \times \mathcal{B}$ with the property that the (x, B) entry is 1 if $x \in B$ and 0 otherwise.

Observation 11.6 If N is the incidence matrix of a 2-design then

$$
N N^{\top}=(r-\lambda) I+\lambda J
$$

Theorem 11.7 (Fisher's Inequality) Every $2-(v, k, \lambda)$ design with $v>k$ satisfies $b \geq v$.
Proof: It follows from (ii) of Corollary 11.4 and $v>k$ that $r>\lambda$. Since J has one eigenvalue v and all others 0 , the matrix $(r-\lambda) I+\lambda J$ has one eigenvalue $r-\lambda+\lambda v=r k$ and all other eigenvalues $r-\lambda$. It follows that $N N^{\top}$ is invertible, so $b \geq v$.

Square Design: We say that a design is square if $v=b$. This is usually given the unfortunate term: symmetric design. Note that if a design is square, then it follows from Corollary 11.4 that $r=k$.

Corollary 11.8 For every square (symmetric) 2-design with v even, $k-\lambda$ is a square.

Proof: Setting N to be the incidence matrix and using the eigenvalue argument from Fisher's Inequality we have

$$
(\operatorname{det} N)^{2}=\operatorname{det}\left(N N^{\top}\right)=(r-\lambda)^{v-1}(r k)=(k-\lambda)^{v-1} k^{2}
$$

Now, since $v-1$ is odd, it must be that $k-\lambda$ is a square.

Bruck-Ryser-Chowla

Theorem 11.9 (Bruck-Ryser-Chowla) For every square (symmetric) 2-design with v odd, the following equation has a nonzero integral solution:

$$
z^{2}=(k-\lambda) x^{2}+(-1)^{(v-1) / 2} \lambda y^{2}
$$

Proof: Let $N=\left\{n_{i j}\right\}_{1 \leq i, j \leq v}$ be the incidence matrix of the design and let $x=\left(x_{1}, x_{2}, \ldots, x_{v}\right)$ be a vector of variables. We define the linear forms $L_{i}=\sum_{j=1}^{v} n_{i j} x_{j}$ (so L_{i} is the $i^{\text {th }}$ entry of $N x$. Setting $m=k-\lambda$ we have $N N^{\top}=m I+\lambda J$. Multiplying on the left by x^{\top} and on the right by x yields the following equation:

$$
\begin{equation*}
L_{1}^{2}+L_{2}^{2} \ldots+L_{v}^{2}=m\left(x_{1}^{2}+x_{2}^{2}+\ldots x_{v}^{2}\right)+\lambda\left(x_{1}+x_{2} \ldots+x_{v}\right)^{2} \tag{1}
\end{equation*}
$$

Now, express m as $m=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ and consider the four variables $x_{1}, x_{2}, x_{3}, x_{4}$. Using the quaternions, we let

$$
y_{1}+y_{2} i+y_{3} j+y_{4} k=\left(a_{1}+a_{2} i+a_{3} j+a_{4} k\right)\left(x_{1}+x_{2} i+x_{3} j+x_{4} k\right)
$$

so each y_{s} is linear in the variables $x_{1} \ldots x_{4}$ and $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}=m\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)$. Now, assume that $v \equiv 1(\bmod 4)$ and repeat this process four variables at a time by introducing new variables $y_{4 s+1}, y_{4 s+2}, y_{4 s+3}, y_{4 s+4}$ which are linear in $x_{4 s+1}, x_{4 s+2}, x_{4 s+3}, x_{4 s+4}$. Now, adding a new variable $w=x_{1}+x_{2}+\ldots x_{v}$ permits us to rewrite the above equation as

$$
L_{1}^{2}+L_{2}^{2}+\ldots L_{v}^{2}=y_{1}^{2}+y_{2}^{2}+\ldots y_{v-1}^{2}+m x_{v}^{2}+\lambda w^{2}
$$

Since the product structure on the quaternions is invertible, we can express $x_{1}, x_{2}, \ldots, x_{v-1}$ as linear forms in $y_{1}, y_{2}, \ldots, y_{v-1}$. If the linear form L_{1} expressed in terms of $y_{1}, y_{2}, \ldots, y_{v-1}, x_{v}$
does not have coefficient 1 for y_{1} then set $L_{1}=y_{1}$ and use this to solve for y_{1} in terms of the remaining variables y_{t} and x_{v}. Otherwise, we set $L_{1}=-y_{1}$ and use this to solve for y_{1} in terms of the remaining variables. In either case we can now rewrite our equation as

$$
L_{2}^{2}+\ldots L_{v}^{2}=y_{2}^{2}+\ldots y_{v-1}^{2}+m x_{v}^{2}+\lambda w^{2}
$$

(where we update w to be a linear combination of the new variables y_{t} and x_{v}). Continuing in this manner for $y_{2}, \ldots y_{v-1}$ we can reduce the original equation to

$$
L_{v}^{2}=m x_{v}^{2}+\lambda w^{2}
$$

Where both L_{v} and w are rational multiples of x_{v}. Multiplying through by a common denominator brings us an integer equation of the form

$$
z^{2}=(k-\lambda) x^{2}+\lambda y^{2}
$$

as desired. The case when $v \equiv 3(\bmod 4)$ is handled in a similar manner. We introduce a new variable x_{v+1} and add $m x_{v+1}^{2}$ to both sides of equation (1). Now our reductions bring us to

$$
m x_{v+1}^{2}=y_{v+1}^{2}+\lambda w^{2}
$$

and then multiplying by a common denominator yields the desired result.

The Small Witt Design

$\mathbf{W}_{\mathbf{1 2}}$: Let $\Omega=P G\left(1, \mathbb{F}_{11}\right)=\mathbb{F}_{11} \cup\{\infty\}$ and let $B=\mathbb{F}_{q} \cup\{\infty\}=\{1,3,4,5,9, \infty\}$. Now we define the Small Witt Design, W_{12}, to be the incidence structure with point set Ω and blocks $\{g(B): g \in P S L(2,11)\}$ (with the natural containment as incidence).

A Matthieu Group: We define $M_{12}=\operatorname{Aut}\left(W_{12}\right)$.
Theorem $11.10 M_{12}$ acts sharply 5-transitively on the points of W_{12}.
Complements: Note that the map ϕ given by $\phi(s)=-\frac{1}{s} \in \operatorname{PSL}(2,11)$. Furthermore, $\phi(B)=\{0,2,6,7,8, X\}$ (here we use X instead of 10). Since $\phi(B)$ and B are complementary subsets of $\mathbb{F}_{11} \cup\{\infty\}$, it follows that the complement of every block of W_{12} is another block of W_{12}.

3-Homogeneous: Note that $\operatorname{PSL}(2,11)$ acts 3-homogeneously on $\mathbb{F}_{11} \cup\{\infty\}$.
Distinguishing $\{\infty, \mathbf{0}, \mathbf{1}\}$: Since W_{12} is 3 -homogenous, every three element set is equivalent under the symmetry group, and we may (without loss) distinguish the three element set $\{\infty, 0,1\}$. If we do so, we find that the remaining points form a structure isomorphic to $A G(2,3)$ as follows:

Figure 1: Our $A G(2,3)$
The Blocks of $\mathbf{W}_{\mathbf{1 2}}$: The following table indicates some of the types of blocks B in W_{12} relative to their intersection with $\{\infty, 0,1\}$. Here the lines of our $A G(2,3)$ are indicated in the figure, and fall into the four parallel classes which we denote as follows:

- the parallel class of $\{7, X, 6\}$
| the parallel class of $\{5, X, 8\}$
/ the parallel class of $\{4, X, 2\}$
\backslash the parallel class of $\{3, X, 9\}$

$\mathbf{B} \cap\{\infty, \mathbf{0}, \mathbf{1}\}$	Description of block B
$\{\infty, 0,1\}$	The union of $\{\infty, 0,1\}$ with a line in our $A G(2,3)$.
\emptyset	The union of two parallel lines in our $A G(2,3)$.
$\{\infty\}$	The union of $\{\infty\}$ with two lines in our $A G(2,3)$ with parallel types either $\{-, \mid\}$ or $\{/, \backslash\}$.
$\{0\}$	The union of $\{0\}$ with two lines in our $A G(2,3)$ with parallel types either $\{-, \backslash\}$ or $\{\mid, /\}$.
$\{1\}$	The union of $\{1\}$ with two lines in our $A G(2,3)$ with parallel types either $\{-, /\}$ or $\{\mid, \backslash\}$.

Note that although we have not explicitly listed the types of blocks whose intersection with $\{\infty, 0,1\}$ has size two, each such block is a complement of one that we have listed. In the figure below, we have labelled an edge with $\infty, 0,1$ if the union of two edges from these parallel classes with the given label form a block.

Figure 2: Edge-Colouring of Slopes

Fixing $\{\infty, 0,1\}$: Let ϕ be an automorphism of our $A G(2,3)$. Now, ϕ gives a permutation of the four parallel classes,$- \mid, /$, and \backslash and thus permutes the perfect matchings of the graph in the above figure. Since these perfect matchings are labelled with either $\infty, 0,1$ it follows that ϕ also induces a permutation of $\{\infty, 0,1\}$. It then follows from our table of block structures that extending ϕ by this permutation of $\{\infty, 0,1\}$ gives an automorphism of W_{12}. Thus

$$
G_{\{\infty, 0,1\}} \cong \operatorname{Aut}(A G(2,3)) \cong A G L(2,3) .
$$

Coordinates: We now equip our $A G(2,3)$ with coordinates by assigning X to be $(0,0)$ (the origin) and assigning each other point a vector (a, b) where $a, b \in\{-1,0,1\}$ according to their position in Figure 1. So, for instance $3=(-1,-1)$. Note that this gives coordinates to our parallel classes as well: - is the set of lines parallel to $(0,1), \mid$ is the set of lines parallel to $(1,0), /$ is the set of lines parallel to $(1,1)$ and \backslash is the set of lines parallel to $(1,-1)$.

3-transitivity: Consider the automorphism ϕ of $G L(2,3)$ given by $\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. This fixes the parallel class $(1,0)$ but permutes the other three cyclically. It follows that ϕ extends to an automorphism of W_{12} which permutes $\infty, 0,1$ cyclically. The automorphism ψ of $G L(2,3)$ given by $\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ fixes the parallel classes $(1,1)$ and $(1,-1)$ but interchanges $(0,1)$ and $(1,0)$. It follows that ψ extends to an automorphism of W_{12}
which fixes 1 but interchanges $0, \infty$. Together, these two automorphisms show that $G_{\{\infty, 0,1\}}$ acts 3 -transitively on $\{\infty, 0,1\}$. It now follows from the 3-homogeneousness of G that G is 3 -transitive.

4-transitivity: The group of translations of $A G(2,3)$ act transitively on the points, and do not change any of the slopes. It follows that any translation of $A G(2,3)$ extends to an automorphism of W_{12} which fixes $\infty, 0,1$. It follows from this that G acts 4 -transitively.

5-transitivity: Now we restrict our attention to those elements of G which fix $\infty, 0,1, X$. These are elements of $A G L(2,3)$ which fix the origin X (so have the form $\vec{x} \rightarrow A \vec{x}$ for some $A \in G L(2,3))$ and permute the four slopes according to the cycle pattern $(\cdot \cdot)(\cdot \cdot)$. All of the following matrices have this property:

$$
\pm\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \pm\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \pm\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right] \pm\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Naming the matrices above as $\pm 1, \pm i, \pm j, \pm k$ we see that these four matrices form a multiplicative subgroup which is isomorphic to the finite quaternion group. If we group each of the elements in $\mathbb{F}_{3}^{2} \backslash\{0\}$ into pairs of opposite elements:

$$
\{ \pm(1,0)\},\{ \pm(0,1)\},\{ \pm(1,1)\},\{ \pm(-1,1)\}
$$

We see that each of i, j, k acts on the above pairs with cycle pattern $(\cdot \cdot)(\cdot \cdot)$ in all three possible ways. Since the -1 matrix takes each element to its opposite, it then follows that this group of 8 matrices acts transitively on the 8 points of $\mathbb{F}_{3}^{2} \backslash\{0\}$. Thus, G acts 5 -transitively.

Sharp 5-transitivity: We have from above that $\left|G_{\{\infty, 0,1\}}\right|=|A G L(3,2)|=48 \cdot 9=2^{4} 3^{3}$ and then $\left|G_{(\infty, 0,1)}\right|=2^{3} 3^{2},\left|G_{(\infty, 0,1, X)}\right|=2^{3}$ and $\left|G_{(i n f t y, 0,1, X, 2)}\right|=1$. Thus G acts sharply 5 -transitively on $P G\left(1, \mathbb{F}_{11}\right)$.

Note: Consider a block B of W_{12} and the subgroup of automorphisms which fix B. It follows immediately from the sharp 5 -transitivity that this subgroup is isomorphic to S_{6}. However, an automorphism which fixes four elements in B and interchanges the other two cannot yield a similarly structured permutation on its complement. It follows that the action of this subgroup on B and its complement are related by an outer automorphism of S_{6}.

