12 The Golay Code

Coding Theory

(Binary) Code: A (binary) [n, k, d] code is a k-dimensional subspace C of \mathbb{F}_2^n with the property that any two distinct points in C have (Hamming) distance $\geq d$ (i.e. any two distinct points differ in at least d coordinates). We call elements of C codewords

Note: If $u, v \in C$ have distance d then 0, v - u have distance d or equivalently v - u has weight d (i.e. has d coordinates with value 1). Thus, the minimum distance between two distinct codewords is equal to the minimum weight of a nonzero codeword.

Example: Let V be the points of the Fano plane and let $C \subseteq \mathbb{F}_2^V$ consist of the vectors 0, 1, the incidence vector of every line, and the complement of the incidence vector of every line. It is straightforward to check that C is a subspace so this is a [7,4,3] code. This code can be generated by the rows of the following matrix.

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}$$

Error Correcting: If C has distance $d \ge 2e+1$ then the Hamming balls of radius e around each codeword are disjoint, so if a codeword was transmitted over a noisy channel causing at most e bitwise errors to occur, these could be reliably corrected.

Perfect Code: We say that an [n, k, 2e + 1] code is *perfect* if the Hamming balls of radius e partition \mathbb{F}_2^n . In this case we must have

$$2^n = 2^k \sum_{i=0}^e \binom{n}{i}$$

Note that the code in the example above is perfect as the Hamming ball of radius 1 around each point contains $1 + 7 = 2^3$ points and the code is a 4-dimensional subspace of \mathbb{F}_2^7 .

The Golay Code

Golay Code: Let N be the matrix constructed in Homework 5, Problem 2 and define the matrix P as follows:

$$P = \begin{bmatrix} 0 & 1 & \dots & 1 \\ 1 & & & \\ \vdots & & N & \\ 1 & & & \end{bmatrix}$$

We define the Golay Code, G_{24} , to be the code generated by the rows of the matrix [IP].

Observation 12.1 G_{24} is a [24, 12, 8]-code.

Proof: It is immediate from the properties of N that any two rows of the generator matrix have dot product 0, so $G_{24}^{\top} = G_{24}$. Every row of the generator matrix has weight a multiple of 4 and it then follows from an easy inductive argument that every codeword of G_{24} has weight a multiple of 4. The sum of two rows of N has weight 6 and the sum of three or four rows of N is nonzero. It follows from this that G_{24} has no codeword of weight 4, so it is a [24, 12, 8] code.

 \mathbf{M}_{24} : We define the Matthieu Group, M_{24} , to be the subgroup of permutations of the 24 coordinates of G_{24} which map codewords to codewords.

Theorem 12.2 M_{24} acts 5-transitively on the coordinates of G_{24} .

Theorem 12.3 Let G act faithfully and 3-transitively on the set Ω . Then one of the following holds:

- (i) G contains all permutations of Ω or all even permutations of Ω
- (ii) This action is isomorphic to AGL(n,2) acting on AG(n,2)
- (iii) $|\Omega| = q + 1$ and this action contains the action of PSL(2,q) on PG(1,q)
- (iv) This action is the action of M_{12} on a set of size 12, or the actions obtained by fixing one or two points of this set.
- (v) This action is the action of M_{24} on a set of size 24, or the actions obtained by fixing one or two points of this set.

Note: The codewords of weight 8 form a 5-(24, 8, 1) design.

 G_{23} : We let G_{23} be the code obtained from G_{24} by deleting one coordinate. Then G_{23} is a [23, 12, 7] code and since every codeword of G_{24} has even weight, we can recover G_{24} from G_{23} by adding a new bit to each codeword so that it has even weight. Note that the sum of the sizes of the Hamming balls of radius 3 around codewords of G_{23} is

$$2^{12} \sum_{i=0}^{3} = 2^{12} (1 + 23 + 253 + 1771) = 2^{12} \cdot 2^{11} = 2^{23}$$

so G_{23} is a perfect code.

Theorem 12.4 The only perfect [n, k, 2e + 1] code with k > 1 and e > 2 is G_{23} .

Alternate Constructions of the Golay Code:

- 1. We construct G_{24} by taking M to be the 12×12 matrix which is the complement of the adjacency matrix of an icosahedron and then taking [IM] as our generator matrix.
- 2. We can construct G_{24} by the following procedure: In the space \mathbb{F}_2^{24} we order the words lexicographically, and at each step choose the smallest word of distance ≥ 8 to any already chosen word.
- 3. We can construct G_{23} by taking the rowspace of the (11-dimensional) matrix $M = \{m_{ij}\}_{i,j\in\mathbb{F}_{23}}$ given by

$$m_{ij} = \begin{cases} 1 & \text{if } i - j \in \mathbb{F}_{23}^{\square} \\ 0 & \text{otherwise} \end{cases}$$