4 Partitions

Proposition 4.1 The number of partitions of n into odd parts is equal to the number of partitions of n into unequal parts.

Proof: The number of partitions of n into unequal parts is given by the generating series $\prod_{k=1}^{\infty} (1+x^k)$ while the number of partitions of n into odd parts is $\prod_{k=1}^{\infty} (1-x^{2k-1})^{-1}$. Now

$$\prod_{k=1}^{\infty} (1+x^k) = \prod_{k=1}^{\infty} \frac{1-x^{2k}}{1-x^k}$$

$$= \prod_{\ell=1}^{\infty} (1-x^{2\ell}) \prod_{k=1}^{\infty} (1-x^k)^{-1}$$

$$= \prod_{k=1}^{\infty} (1-x^{2k-1})^{-1}. \quad \Box$$

Partitions into Unequal Parts: For a positive integer k we let $p_e(k)$ $(p_o(k))$ denote the number of partitions of k into an even (odd) number of unequal parts.

Pentagonal Number: We define $\omega : \mathbb{Z} \to \mathbb{Z}$ by the rule $\omega(m) = (3m^2 + m)/2$. The pentagonal numbers are the range of ω . This description is motivated by the following sequence $\omega(-1) = 1$, $\omega(-2) = 5$, $\omega(-3) = 12$.

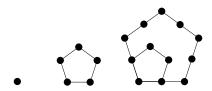


Figure 1: Some Pentagonal Numbers

Ferrers Diagram: The *Ferrers Diagram* associated with a partition $\lambda = (\lambda_1, \dots, \lambda_k)$ is a left-aligned array of dots with k rows and λ_i dots in the i^{th} row.

Theorem 4.2 (Euler)

$$\prod_{k=1}^{\infty} (1 - x^k) = \sum_{k=0}^{\infty} (p_e(k) - p_o(k)) x^k = 1 + \sum_{k=1}^{\infty} (-1)^k \left(x^{\omega(k)} + x^{\omega(-k)} \right)$$

Proof: The first equality above is immediate. For the second, consider a Ferrers diagram of a partition of n into unequal parts. Recall that the *length* of the partition is the number of rows, which we denote by ℓ . Call the last row the *base* and let b be the number of dots in the base. The *slope* is the longest line of dots starting with the last one in the first row and proceeding diagonally downward (so the corresponding line is at 45°) and we let s be the number of dots in the slope. We now define an operation on Ferrers diagrams as follows:

Case 1: $b \le s$

Move the base to become the new slope unless $b = \ell = s$.

Case 2: b > s

Move the slope to become the new base unless $b-1=s=\ell$

It is easily verified that applying this operation twice brings us back to the same Ferrers diagram. Since this operation switches the parity of the number of parts, it follows that $p_e(n) - p_o(n)$ is zero except when there is a partition of n with $b = \ell = s$ or with $b - 1 = s = \ell$ (in which case $p_e(n) - p_o(n) = (-1)^{\ell}$). In the first case $n = b + (b+1) + \dots (b+(b-1)) = \omega(b)$ and in the second $n = (s+1) + (s+2) + \dots (s+s) = \omega(-s)$. Combining this information yields the second inequality. \square