5 Partially Ordered Sets

Poset: A partially ordered set or poset is a pair (P, \preceq) where P is a set and \preceq is a relation on P satisfying:

```
(reflexive) x \leq x for every x \in P

(antisymmetric) x \leq y and y \leq x for x, y \in P only if x = y

(transitive) x \leq y and y \leq z imply x \leq z for every x, y, z \in P
```

Graded Poset: A ranked poset is a poset (P, \preceq) together with a rank function which assigns a natural number called a rank to each element in P with the property that the rank of x is less than or equal to the rank of y whenever $x \preceq y$.

Inclusion Poset: If $A, B \subseteq [n]$ we define $A \preceq B$ if $A \subseteq B$. The poset consisting of all subsets of [n] with this relation is an *inclusion poset*. Note that giving each set A the rank |A| makes this a ranked poset.

Subspace Poset: Let V be a finite vector space. If U, U' are subspaces of V we let $U \leq U'$ if $U \subseteq U'$. The poset consisting of all subspaces of V with this relation is a *subspace poset*. Note that declaring the rank of U to be its dimension makes this a ranked poset.

Divisibility Poset: Define a relation on the positive integers by the rule that $a \leq b$ if a|b. The resulting poset is the *divisibility poset*

Related: Two elements in a poset $x, y \in P$ are related if $x \leq y$ or $y \leq x$ and otherwise x, y are unrelated.

Maximal & Minimal: An element $x \in P$ is maximal (minimal) if there does not exist $y \in P \setminus \{x\}$ with $x \leq y$ ($y \leq x$).

Acyclic Digraph: We shall assume that digraphs are simple (no loops or arcs with the same initial and same terminal vertices). A digraph is *acyclic* if it has no directed cycle.

Transitive Closure: If D = (V, E) is an acyclic digraph, then the *transitive closure* of D is the digraph \bar{D} with vertex set V and with an edge (x, y) if and only if y can be reached

from x in D by a directed path. It is easily verified that the transitive closure of an acyclic digraph is acyclic, and satisfies (x,y) and (y,z) imply (x,z). Thus, the relation \leq on V given by the rule $x \leq y$ if (x,y) is an edge of \bar{D} defines a partial order on V. We call this the partial order associated with D.

Cover: We say that x covers y (in the poset P) if $x \neq y$ and $y \leq x$ and there does not exist $z \in P \setminus \{x, y\}$ such that $y \leq z \leq x$.

Hasse Diagram: Starting with a poset (P, \preceq) we define a directed graph H with vertex set P by the rule that (x, y) is an edge if y covers x in P. The digraph H is called a Hasse digraph for P and when it is drawn in the plane with edges as straight lines going from the lower endpoint to the upper endpoint this is called a Hasse Diagram.

Linear Order: A linear order or total order is a partial order with the property that every pair of elements are related. In this case (assuming the set is finite) the elements may be numbered x_1x_2, \ldots, x_n so that $x_i \leq x_j$ whenever $i \leq j$.

Linear Extension: If (P, \preceq) is a poset, a *linear extension* of P is a relation \preceq^* on P so that (P, \preceq^*) is a linear order and so that $x \preceq y$ implies $x \preceq^* y$.

Observation 5.1 Every finite partial order (P, \preceq) has a linear extension. Further, if $x, y \in P$ are unrelated then there is a linear extension \preceq_1 with $x \preceq_1 y$ and a linear extension \preceq_2 with $y \preceq_2 x$.

Proof: We may form a linear extension inductively by simply removing a maximal element z, applying induction to order the resulting poset, and then adding our z back at the top. If $x, y \in P$ are unrelated, then consider the Hasse digraph H. Since x, y are unrelated there are no directed paths from x to y or y to x, so by adding the edge (x, y) we still have an acyclic digraph. Any linear extension \preceq^* of the associated poset will have $x \preceq^* y$.

Note: The statement that every partial order has a linear extension is called the *Order Extension Principle*. This statement is strictly weaker than the Axiom of Choice, but still cannot be proved in ZF.

Conjecture 5.2 (The $\frac{1}{3} - \frac{2}{3}$ Conjecture) For every finite poset (P, \preceq) which is not linearly ordered, there exist $x, y \in P$ so that the fraction of those linear extensions for which x is above y is between $\frac{1}{3}$ and $\frac{2}{3}$.

Chain: A *chain* is a linearly ordered subset.

Antichain: A subset of pairwise unrelated elements.

Theorem 5.3 (Dilworth) If (P, \preceq) is a finite poset whose maximal antichain has size k, then P can be partitioned into k chains.

Intersection: The *intersection* of the partial orders (P, \leq_1) and (P, \leq_2) is the order \leq given by the rule that $x \leq y$ if $x \leq_1 y$ and $x \leq_2 y$. It is immediate that (P, \leq) is a partial order.

Dimension: The *dimension* of a poset (P, \preceq) is the minimum number of linear orders on P whose intersection is \preceq .

Incidence Poset: If G = (V, E) is a graph, then the *incidence poset* of G is the graded poset where every vertex has rank 1, every edge has rank 2, and for $v \in V$ and $e \in E$ we have $v \leq e$ if e and v are incident.

Theorem 5.4 (Schnyder) A graph G has incidence poset of dimension at most 3 if and only if G is planar.