3 Distances and Dot Products

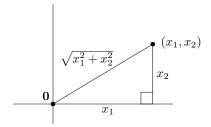
Norms and Distance

Definition: We define the *norm* of $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ to be

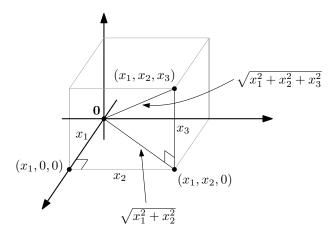
$$||\mathbf{x}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Lemma 3.1. For every point $\mathbf{x} \in \mathbb{R}^n$, the distance between $\mathbf{0}$ and \mathbf{x} is $||\mathbf{x}||$.

Proof. If n = 1 then $\mathbf{x} = (x_1)$ and $||\mathbf{x}|| = |x_1|$ is the distance between the origin and \mathbf{x} . For n = 2 this is a familiar consequence of the Pythagorean theorem as shown in the figure below.



For $n \geq 3$ we deduce the result by using two applications of the Pythagorean Theorem (see the following figure). First apply Pythagoras to the triangle with vertices (0,0,0), $(x_1,0,0)$ and $(x_1,x_2,0)$ to deduce that the distance between $(x_1,x_2,0)$ and the origin is $\sqrt{x_1^2 + x_2^2}$. Then apply Pythagoras to the triangle with vertices (0,0,0), $(x_1,x_2,0)$, and (x_1,x_2,x_3) to deduce that the distance between (x_1,x_2,x_3) and 0 is $\sqrt{x_1^2 + x_2^2 + x_3^2}$ as desired.



The general case follows by a similar argument. Using the Pythagorean Theorem to the triangle with vertices $(0,0,\ldots,0)$ and $(x_1,0,\ldots,0)$ and $(x_1,x_2,\ldots,0)$ we deduce that the distance between $(0,0,\ldots,0)$ and $(x_1,x_2,0,0,\ldots,0)$ is $\sqrt{x_1^2+x_2^2}$. Then, using the Pythagorean Theorem to the triangle with vertices $(0,0,\ldots,0)$ and $(x_1,x_2,0,\ldots,0)$ and $(x_1,x_2,x_3,0,\ldots,0)$ we deduce that the distance between $(0,0,\ldots,0)$ and $(x_1,x_2,x_3,0,\ldots,0)$ is $\sqrt{x_1^2+x_2^2+x_3^2}$. Continuing in this manner we eventually find that the distance between $(0,0,\ldots,0)$ and (x_1,x_2,\ldots,x_n) is $\sqrt{x_1^2+x_2^2+\ldots+x_n^2}$ as claimed.

Theorem 3.2. For any two points $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the distance between \mathbf{x} and \mathbf{y} is

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$$

Dot Products

Definition: If $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$, the dot product of \mathbf{x} and \mathbf{y} is

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n.$$

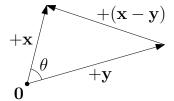
Notes:

- The dot product is commutative: $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$
- If $t \in \mathbb{R}$ then $(t\mathbf{x}) \cdot \mathbf{y} = t(\mathbf{x} \cdot \mathbf{y})$
- The dot product obeys $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$.
- $\mathbf{x} \cdot \mathbf{x} = ||\mathbf{x}||^2$

Proposition 3.3 (Dot product formula). If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ make an angle of θ , then

$$\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| \, ||\mathbf{y}|| \cos \theta.$$

Proof. Assume that \mathbf{x} and \mathbf{y} span a 2-dimensional subspace as shown in the figure below. (The other case will be homework!)



Using the Law of Cosines and some elementary properties of the dot product we have

$$||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2||\mathbf{x}|| ||\mathbf{y}|| \cos \theta = ||\mathbf{x} - \mathbf{y}||^2$$
$$= (\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})$$
$$= \mathbf{x} \cdot \mathbf{x} + \mathbf{y} \cdot \mathbf{y} - 2(\mathbf{x} \cdot \mathbf{y})$$
$$= ||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2(\mathbf{x} \cdot \mathbf{y})$$

and this equation immediately simplifies to the desired identity.

Corollary 3.4. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ make an angle of θ where $0 \le \theta \le \pi$, then

$$\mathbf{x} \cdot \mathbf{y} \begin{cases} > 0 & \text{if } \theta < \frac{\pi}{2} & (\theta \text{ is acute}) \\ = 0 & \text{if } \theta = \frac{\pi}{2} & (\theta \text{ is a right angle}) \\ < 0 & \text{if } \theta > \frac{\pi}{2} & (\theta \text{ is obtuse}) \end{cases}$$

Definition: Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are *orthogonal* if $\mathbf{x} \cdot \mathbf{y} = 0$. Note: if \mathbf{x} and \mathbf{y} are nonzero, they are orthogonal if and only if they make an angle of $\frac{\pi}{2}$