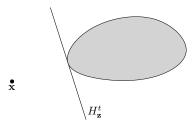
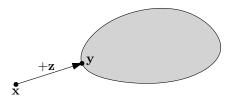
8 Separating Hyperplanes

Definition. A set $S \subseteq \mathbb{R}^n$ is *closed* if it has the property that whenever a sequence of points in S, say $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a point \mathbf{x} , then we also have $\mathbf{x} \in S$.

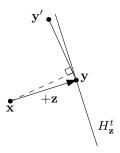
Proposition 8.1. Let $S \subseteq \mathbb{R}^n$ be a closed and convex set and let $\mathbf{x} \in \mathbb{R}^n$ satisfy $\mathbf{x} \notin S$. Then there exists a hyperplane $H^t_{\mathbf{z}}$ separating \mathbf{x} and S: Namely $\mathbf{x} \cdot \mathbf{z} < t$ and every $\mathbf{w} \in S$ satisfies $\mathbf{w} \cdot \mathbf{z} \geq t$.



Proof. Let $\mathbf{y} \in S$ be a closest point to \mathbf{x} and define the (nonzero) vector $\mathbf{z} = \mathbf{y} - \mathbf{x}$ and the scalar $t = \mathbf{z} \cdot \mathbf{y}$.



Note that $\mathbf{z} \cdot \mathbf{x} = \mathbf{z} \cdot (\mathbf{y} - \mathbf{z}) = t - \mathbf{z} \cdot \mathbf{z} < t$. So, the point \mathbf{y} lies on the hyperplane $H_{\mathbf{z}}^t$ and the point \mathbf{x} lies on the side of this hyperplane containing those points whose dot product with \mathbf{z} is less than t. Suppose (for a contradiction) that there exists $\mathbf{y}' \in S$ so that $\mathbf{z} \cdot \mathbf{y}' < t$. In this case, there is a plane in \mathbb{R}^n containing \mathbf{x} , \mathbf{y} , and \mathbf{y}' as in the figure below.



However, this picture is contradictory. Since S is convex, the line segment $\overline{\mathbf{y}}\overline{\mathbf{y}}'$ is contained in S. But this segment contains a point closer to \mathbf{x} than \mathbf{y} , and contradicts the choice of \mathbf{y} . It follows that every $\mathbf{w} \in S$ satisfies $\mathbf{w} \cdot \mathbf{z} \geq t$ as desired.