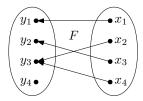
12 Transformations

Bijections

Definition. A function consists of a set called the domain, a set called the codomain, and a rule which assigns each element from the domain to one element of the codomain. If F is a function with domain X and codomain Y we write $F: X \to Y$.

Example: A function $F : \{x_1, ..., x_4\} \to \{y_1, ..., y_4\}.$

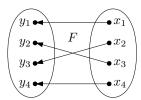


Definition. A function $F: X \to Y$ is one-to-one if every $x, x' \in X$ with $x \neq x'$ satisfy $F(x) \neq F(x')$. Equivalently, F is one-to-one if every $y \in Y$ is the image of at most element of X. We say that F is onto if every $y \in Y$ is the image of at least one element of X.

Note: The function in the previous example is not one-to-one since $f(x_2) = f(x_4) = y_3$. It is not onto since y_4 is not the image of any element in X.

Definition. A function $F: X \to Y$ is a *bijection* if it is both one-to-one and onto. Equivalently, F is a bijection if for every $y \in Y$ there is exactly one $x \in X$ with F(x) = y.

Example: A bijection $F: \{x_1, \ldots, x_4\} \rightarrow \{y_1, \ldots, y_4\}$.



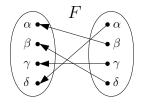
Notes:

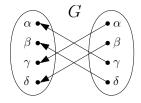
- A bijection $F: X \to Y$ gives a correspondence between the elements of X and the elements of Y. Such a function can only exist when X and Y have the same size.
- If $F: X \to Y$ is a bijection, there is an inverse function $F^{-1}: Y \to X$ given by the rule that if F(x) = y then $F^{-1}(y) = x$.

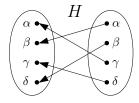
Transformations

Definition. For any set X a transformation of X is a bijection $F: X \to X$.¹ We define Trans(X) to be the set of all transformations of X.

Example: Below are three transformations F, G, and H of the set $\{\alpha, \beta, \gamma, \delta\}$







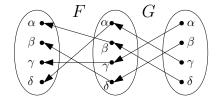
Features of Trans(X):

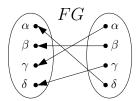
Identity. We define the *identity* function on X to be the function $I_X : X \to X$ given by the rule $I_X(x) = x$ for every $x \in X$. Note that the identity is a bijection, so we have $I_X \in \text{Trans}(X)$. If the set X is clear from context we write I instead of I_X .

Product. If $F, G \in \text{Trans}(X)$ then the composition function $F \circ G$ is also a bijection from X to X. We use product notation for this composition, so we define $FG = F \circ G$. So, in short, if $F, G \in \text{Trans}(X)$ then $FG \in \text{Trans}(X)$. Since function composition is associative, we have (FG)H = F(GH) whenever $F, G, H \in \text{Trans}(X)$.

Inverse. If $F \in \text{Trans}(X)$ then since F is a bijection it has an inverse function, denoted F^{-1} which is also in Trans(X). Note that $FF^{-1} = I$ and $F^{-1}F = I$.

Example: Here we show the product of the transformations F, G from above





Note: An algebraic structure which has an identity, an associative product, and inverses is called a "group". Accordingly, we call Trans(X) the $transformation\ group$ of X.

¹As a warning, this notation is not universal.

Algebra of Transformations

Lemma 12.1. If $A, B, B', C \in \text{Trans}(X)$ and ABC = AB'C, then B = B'

Proof. Starting with the equation ABC = AB'C we may multiply both sides on the left by A^{-1} . This gives the equation $A^{-1}ABC = A^{-1}AB'C$ which simplifies to BC = B'C. Now multiplying both sides of this equation on the right by C^{-1} gives us $BCC^{-1} = B'CC^{-1}$ which simplifies to B = B' giving us the result.

Lemma 12.2. If $A, B \in \text{Trans}(X)$ satisfy AB = I then $B = A^{-1}$.

Proof. This follows from the previous lemma and the equation $AB = I = AA^{-1}$.

Lemma 12.3. If
$$A_1, \ldots, A_n \in \text{Trans}(X)$$
 then $(A_1 A_2 \cdots A_n)^{-1} = A_n^{-1} \cdots A_2^{-1} A_1^{-1}$

Proof. This follows from the previous lemma and the equation

$$(A_n^{-1} \cdots A_2^{-1} A_1^{-1})(A_1 A_2 \cdots A_n) = A_n^{-1} \cdots A_2^{-1} A_2 \cdots A_n = I.$$

Definition. Since we use multiplicative notation for composition, we make the following definitions for any $A \in \text{Trans}(X)$ and any positive integer n

$$(1) A^n = \underbrace{AA\cdots A}_{n}.$$

(2)
$$A^{-n} = \underbrace{A^{-1}A^{-1} \cdots A^{-1}}_{n} = (A^{n})^{-1}$$

(3)
$$A^0 = I$$

So if $s, t \in \mathbb{Z}$ we have $(A^s)(A^t) = A^{s+t}$ (just like exponents for real numbers).