# 16 Cyclic and Dihedral Groups

#### The integers modulo n

If the current time is 9 o'clock, then 7 hours later the time will be 4 o'clock. This is because 9+7=16 and 16 is treated as the same as 4 since these two numbers differ by 12. This is an instance of arithmetic in  $\mathbb{Z}_{12}$ , the integers modulo 12.

**Definition.** For every positive integer n we define  $\mathbb{Z}_n$  to be the integers  $\mathbb{Z}$  with an additional equivalence: We treat a and b as equivalent if a and b differ by a multiple of n. Up to this equivalence,  $\mathbb{Z}_n$  has just n distinct numbers  $\{0, 1, \ldots, n-1\}$ . We call  $\mathbb{Z}_n$  the integers  $modulo\ n$  and we say that  $a \in \mathbb{Z}_n$  is in  $standard\ form$  if a is one of  $0, 1, \ldots, n-1$ .

**Note:** When doing clock arithmetic we are working with  $\mathbb{Z}_{12}$ , the integers modulo 12. However, unlike the usual convention in math of using  $\{0, 1, ..., 11\}$ , when working with a 12 hour clock it is common to use  $\{1, 2, ..., 12\}$  instead.

**Addition.** If  $a, b \in \mathbb{Z}_n$  are represented in standard form then adding them give us another integer that will be at least 0 and at most 2n-2. If this integer is  $\geq n$ , then in order to get back to the usual form we need to subtract n.

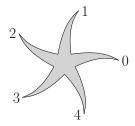
**Example:** The integers modulo 5 have addition table (in standard form)

**Negation.** Our definitions apply equally well to negative numbers. When working in  $\mathbb{Z}_n$  a negative integer -a is equivalent to -a + n and -a + 2n and so on.

**Example:** The following chart shows the negation of the (standard form) elements of  $\mathbb{Z}_8$ .

## The cyclic group $C_n$

To see why we introduced the integers modulo n, let's think about symmetries of the figure below, where we have marked the 5 extreme points with the elements of  $\mathbb{Z}_5$ .



The only symmetries of this object are rotations about the centre point by multiples of  $\frac{2\pi}{5}$ . Let's think about how the marked points behave under the symmetries. If we rotate (counterclockwise) by  $\frac{2\pi}{5}$ , then 0 goes to 1, 1 goes to 2, 2 goes to 3, 3 goes to 4, and 4 goes to 1. This is described very compactly by using the arithmetic of  $\mathbb{Z}_5$ . Namely, working in  $\mathbb{Z}_5$ , the point with label a goes to the point with label a+1.

**Definition.** If a is an element of  $\mathbb{Z}_n$  we define the function  $R_a : \mathbb{Z}_n \to \mathbb{Z}_n$  by the rule  $R_a(x) = x + a$ . We call any such function a rotation (of  $\mathbb{Z}_n$ ). It is straightforward to verify that every rotation is a transformation of  $\mathbb{Z}_n$ .

**Definition.**  $C_n = \{R_a \mid a \in \mathbb{Z}_n\}$ . The following lemma shows that  $C_n$  is a subgroup of  $\mathbb{Z}_n$  and we say that  $C_n$  is a *cyclic* group.

#### **Lemma 16.1.** $C_n$ is a subgroup of Trans( $\mathbb{Z}_n$ )

Proof. First note that the  $R_0 = I$ , so  $C_n$  does contain the identity. Next let  $a, b \in \mathbb{Z}_n$  and consider the product of the functions  $R_a$  and  $R_b$ . For every  $x \in \mathbb{Z}_n$  we have  $R_a R_b(x) = R_a(R_b(x)) = R_a(x+b) = x + (a+b) = R_{a+b}(x)$ . It follows that  $C_n$  is closed under products. It follows from this that every  $a \in \mathbb{Z}_n$  satisfies  $R_a R_{-a} = R_0 = I$ . So, the inverse of  $R_a$  is  $R_{-a}$  and we have that  $C_n$  is also closed under inverses.

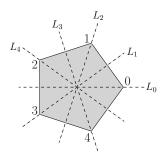
**Example:** The group  $C_5$  is a subgroup of Trans( $\mathbb{Z}_5$ ) consisting of the five functions  $R_0$  (add 0),  $R_1$  (add 1),  $R_2$  (add 2),  $R_3$  (add 3), and  $R_4$  (add 4). The function  $R_0$  is the identity,  $R_1$ ,  $R_4$  are inverses, and  $R_2$ ,  $R_3$  are inverses. To combine the elements we use the rule  $R_aR_b = R_{a+b}$  using addition modulo 5 for the indices.

### The dihedral group $D_n$

Next we consider symmetries of a regular pentagon, where the vertices have been marked with elements of  $\mathbb{Z}_5$  as shown below.



As before, we consider how the marked points behave under symmetries of the pentagon. Rotating the pentagon around its centre by a multiple of  $\frac{2\pi}{5}$  is a symmetry. These symmetries align with the rotations of  $\mathbb{Z}_5$  above. However, we also have some additional symmetries. The figure below shows lines,  $L_0, \ldots, L_4$  and each of these lines indicates a mirror symmetry.



The mirror symmetry for line  $L_0$  takes the point 0 to itself, interchanges 1 and 4, and interchanges 2 and 3. This is precisely the function  $F: \mathbb{Z}_5 \to \mathbb{Z}_5$  given by the rule F(x) = -x. More generally, as you can easily verify, the mirror symmetry for line  $L_i$  is given by the transformation of  $\mathbb{Z}_5$  given by  $x \to -x + i$ . Next we introduce a definition to generalize this example.

**Definition.** If a is an element of  $\mathbb{Z}_n$ , we define the function  $M_a : \mathbb{Z}_n \to \mathbb{Z}_n$  by the rule  $M_a(x) = -x + a$ . We call any such function a *mirror* of  $\mathbb{Z}_n$ . It is straightforward to verify that every mirror is a transformation of  $\mathbb{Z}_n$ .

**Definition.**  $D_n = \{R_a \mid a \in \mathbb{Z}_n\} \cup \{M_a \mid a \in \mathbb{Z}_n\}$ . So,  $D_n$  is the set of all transformations of  $\mathbb{Z}_n$  of the form  $F(x) = \pm x + a$ . The following lemma shows that  $D_n$  is a subgroup of  $\text{Trans}(\mathbb{Z}_5)$  and we say that  $D_n$  is a dihedral group.

#### **Lemma 16.2.** $D_n$ is a subgroup of Trans( $\mathbb{Z}_n$ )

*Proof.* We have  $I = R_0$  so  $D_n$  contains the identity. To check for closure under products, let  $F, G \in D_n$  and note that we may write F, G as F(x) = ax + b and G(x) = cx + d where  $a, c = \pm 1$ . Now the function FG satisfies

$$FG(x) = F(G(x)) = F(cx + d) = a(cx + d) + b = (ac)x + (ad + b).$$

Therefore,  $FG = R_{ad+b}$  if ac = 1 and  $FG = M_{ad+b}$  if ac = -1. In either case we find that  $FG \in D_n$  and thus  $D_n$  is closed under products. To verify that  $D_n$  is closed under inverses, first note that every rotation  $R_a$  has inverse  $R_{-a}$ . We claim that every mirror  $M_a$  is its own inverse. To check this, we compute

$$M_a M_a(x) = M_a(-x+a) = -(-x+a) + a = x$$

So, every mirror is its own inverse, and we conclude that  $D_n$  is closed under inverses.

At this point we have studied  $\operatorname{Trans}(X)$  in three special cases. When  $X = \{1, 2, ..., n\}$  this is the group of all permutations  $S_n$ , and we have shown that  $A_n$  (the even permutations) form a subgroup. When  $X = \mathbb{Z}_n$  the set X has a simple structure under addition, and we have shown the existence of two subgroups based on this structure:  $D_n$  and  $C_n$ . Finally we have looked at this when  $X = \mathbb{R}^n$  where we introduced several specially structured subgroups.

