10 Hamiltonian Cycles

In this section, we consider only simple graphs.

Finding Hamiltonian Cycles

Hamiltonian: A cycle C of a graph G is Hamiltonian if $V(C) = V(G)$. A graph is Hamiltonian if it has a Hamiltonian cycle.

Closure: The (Hamiltonian) closure of a graph G, denoted $\text{Cl}(G)$, is the simple graph obtained from G by repeatedly adding edges joining pairs of nonadjacent vertices with degree sum at least $|V(G)|$ until no such pair remains.

Lemma 10.1 A graph G is Hamiltonian if and only if its closure is Hamiltonian.

Proof: Suppose (for a contradiction) that the lemma is false. Then we may choose a graph G with $|V(G)| = n$ and a pair of non-adjacent vertices $u, v \in V(G)$ with $\text{deg}(u) + \text{deg}(v) \geq n$ so that G is not Hamiltonian, but adding a new edge uv to G results in a Hamiltonian graph. Every Hamiltonian cycle in this new graph contains the new edge uv, so in the original graph G there is a path from u to v containing every vertex. Let $v = v_1, v_2, \ldots, v_n = u$ be the vertex sequence of this path. Set

$$P = \{v_i : i \geq 2 \text{ and } v_i \text{ is adjacent to } v_1\}$$
$$Q = \{v_i : i \geq 2 \text{ and } v_{i-1} \text{ is adjacent to } v_n\}$$

Then $|P| + |Q| = \text{deg}(v) + \text{deg}(u) \geq n$ and since $P \cup Q \subseteq \{v_2, \ldots, v_n\}$, it follows that there exists $2 \leq i \leq n$ with $v_i \in P \cap Q$, so there is an edge e with ends v_1 and v_i and an edge e' with ends v_n and v_{i-1}. Using these two edges, we may form a Hamiltonian cycle in G as desired. □

Theorem 10.2 (Dirac) If G is a graph with $n = |V(G)| \geq 3$ and $\delta(G) \geq \frac{n}{2}$, then G is Hamiltonian.

Proof: The graph $\text{Cl}(G)$ is complete, so this follows from the above lemma. □
Theorem 10.3 (Chvátal) Let G be a graph with $n = |V(G)| \geq 3$ and vertex degrees $d_1 \leq d_2 \leq \ldots \leq d_n$. If either $d_i > i$ or $d_{n-i} \geq n-i$ for every $1 \leq i < \frac{n}{2}$, then G is Hamiltonian.

Proof: It suffices to prove that $Cl(G)$ is complete for any graph satisfying the above assumption. Suppose (for a contradiction) that G is a graph with $E(G)$ maximal which satisfies the above assumption but has $Cl(G)$ not complete. It follows from our maximality assumption that $G = Cl(G)$. Now, choose nonadjacent vertices u, v with $\text{deg}(u) + \text{deg}(v)$ maximum, and assume that $\text{deg}(u) \leq \text{deg}(v)$. Set $i = \text{deg}(u)$ and note that by assumption $\text{deg}(u) + \text{deg}(v) \leq n-1$ so $i < \frac{n}{2}$ and $\text{deg}(v) \leq n-i-1$.

Since $\text{deg}(v) \leq n-i-1$ there are at least i vertices nonadjacent to v, and by our assumption each of these has degree $\leq \text{deg}(u) = i$. Thus, G has at least i vertices with degree $\leq i$ and we have $d_i \leq i$.

Similarly, $\text{deg}(u) = i$ so there are exactly $n-i-1$ vertices nonadjacent to u, and by our assumption, each has degree $\leq \text{deg}(v) \leq n-i-1$. Since u also has degree $i = \text{deg}(u) \leq \text{deg}(v) \leq n-i-1$, this gives us a total of at least $n-i$ vertices with degree $< n-i$ so $d_{n-i} < n-i$. This contradicts our assumption and completes the proof. \square

Lemma 10.4 If G is a graph with $\delta(G) \geq 2$, then G has a cycle of length $\geq \delta(G) + 1$.

Proof: Set $\delta = \delta(G)$. Let P be a maximal path in G and let v be an end of P. By assumption, v has at least δ neighbors all of which must lie on P. If u is the neighbor of v which is furthest from v on P, then the subpath of P from v to u together with uv is a cycle of length $\geq \delta + 1$. \square

Theorem 10.5 (Chvátal-Erdös) If G is a k-connected graph with $|V(G)| \geq 3$ and $\alpha(G) \leq k$, then G is Hamiltonian.

Proof: Let C be a cycle of G of maximum length, and suppose (for a contradiction) that C is not Hamiltonian. Since G has minimum degree $\geq k$, it follows from Lemma 10.4 that C has length $\geq k+1$. Let H be a component of $G - V(C)$ and let S be the set of vertices in $V(C)$ which have a neighbor in $V(H)$. Since G is k-connected and $|V(G)| \geq k+1$ we must have $|S| \geq k$. Also, observe that no two vertices in S can be consecutive on C since this would yield a cycle longer than C (contradicting our assumption). Let T be the set of all vertices
$v \in V(C)$ so that v is the clockwise neighbor of a point in S (on the cycle C). Note that $S \cap T = \emptyset$ by our earlier observation. If there exist $t_1, t_2 \in T$ which are adjacent, then let $s_1, s_2 \in S$ be the counterclockwise neighbors of t_1, t_2 (respectively) and choose a path $P \subseteq G$ from s_1 to s_2 with all internal vertex in $V(H)$. Now the graph $C - s_1t_1 - s_2t_2 + P + t_1t_2$ is a cycle longer than C contradicting our assumption. Thus T is an independent set of size $|T| = |S| \geq k$, and we may add to T any vertex in $V(H)$ to obtain an independent set of size $\geq k + 1$. However, this contradicts the assumption $\alpha(G) \leq k$, thus completing the proof. □

Structure

Observation 10.6 Let G be a graph and let $X \subseteq V(G)$. If $|X| < \text{comp}(G - X)$, then G is not Hamiltonian.

Proof: We prove the contrapositive. If $C \subseteq G$ is a Hamiltonian cycle, then

$$|X| \geq \text{comp}(C - X) \geq \text{comp}(G - X).$$

□

Theorem 10.7 (Smith) If G is a d-regular graph where d is odd and $e \in E(G)$, then there are an even number of Hamiltonian cycles in G which pass through the edge e.

Proof: Choose an end v of e, and construct a simple graph H as follows. Define $V(H)$ to be the set of all Hamiltonian paths in G which have v as an end and contain e. If P is such a path with ends v, u, then for every $uw \in E(G)$ with $w \neq v$, add an edge in the graph H from P to other Hamiltonian path contained in $P + uw$. Now, a vertex of H has odd degree if and only if this Hamiltonian path may be extended to a Hamiltonian cycle. Further, for every Hamiltonian cycle containing e, the Hamiltonian path obtained by removing the other edge incident with v appears as a vertex of H with odd degree. Thus, the number of Hamiltonian cycles containing e is exactly equal to the number of vertices of odd degree in H, and this is necessarily even. □

Observation 10.8 Every 3-regular graph which is Hamiltonian is 3-edge-colourable.

Proof: Let G be 3-regular and Hamiltonian. Then $|V(G)|$ is even (since all degrees are odd), so if C is a Hamiltonian cycle, we can colour the edges of C alternately red and blue and colour all other edges green. □
Theorem 10.9 (Grinberg) If G is a plane graph with a Hamiltonian cycle C, and G has f'_i faces of length i inside C and f''_i faces of length i outside C for every i, then $\sum_i (i - 2)(f'_i - f''_i) = 0$

Proof: We shall prove that $\sum_i (i - 2)f'_i = |V(G)| - 2 = \sum_i (i - 2)f''_i$ by induction on $|E(G) \setminus E(C)|$. As a base case, observe that the formula holds trivially whenever $|E(G) \setminus E(C)| = 0$. For the inductive step, let G be a plane graph with Hamiltonian cycle C and $|E(G) \setminus E(C)| > 0$, and assume that the theorem holds for every such graph and cycle with $|E(G) \setminus E(C)|$ of smaller value. Let $e \in E(G) \setminus E(C)$. We shall assume that e lies inside the cycle C, the other case is similar. Let S and T be the faces on either side of e and assume that S has size s and T has size t. By induction, the formula holds for $G - e$, and since the outside of C is the same in $G - e$ as in G we have $\sum_i (i - 2)f''_i = |V(G)| - 2$. For the inner faces, we see that $G - e$ has lost a contribution of $s - 2$ from S and $t - 2$ from T, but has gained a contribution of $(s - t - 2) - 2$ from the new face formed from S and T. Thus, the formula holds for G. \square