
Linear Programming

Vectors in this section are column vectors by default. The dimensions of our vectors are

frequently not stated, but must be inferred from context. If a, b are vectors from the same

space, we write a ≤ b if ai ≤ bi for every coordinate i. Similarly, we write a ≥ 0 if a is

coordinatewise greater than the vector of zeros.

Cone: A set C ⊆ Rn is a cone if λx ∈ C whenever x ∈ C and λ ≥ 0.

Polyhedral Cone: A polyhedral cone is any set of the form {Ax : x ≥ 0} where A is a real

m× n matrix.
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C = {Ax : x ≥ 0}

H = {z : z · y = 0}

Lemma 1 (Farkas Lemma) If A is an m × n real matrix and b ∈ Rm, then exactly one

of the following holds:

(i) There exists x ≥ 0 so that Ax = b.

(ii) There exists y so that y>A ≥ 0 and y>b < 0.

Note: Lemma 1 is equivalent to the obvious fact that given a point b and a cone C = {Ax :

x ≥ 0}, either (i) b ∈ C or (ii) there is a hyperplane (with normal y) through the origin

separating b from C.
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Proof: It follows from the fact that C is closed and convex that there exists a hyperplane H

with normal vector y which separates b from C. Shift H to a parallel hyperplane H ′ (keeping

the same normal vector) until it meets the cone C. Since 0 is in every minimal face of C, it

follows that 0 ∈ H ′. Now by possibly replacing y by −y we may arrange that y>b < 0 and

y>A ≥ 0.

Corollary 2 If A is an m× n matrix and b ∈ Rm, then exactly one of the following holds:

(i) There exists x so that Ax ≤ b.

(ii) There exists y ≥ 0 so that y>A = 0 and y>b < 0.

Proof: It is immediate that (i) and (ii) are mutually exclusive, as otherwise we would have

0 = y>Ax ≤ y>b < 0 which is contradictory.

To see that one of these conclusions must hold, consider the matrix A′ = [I A − A] and

apply the Farkas Lemma to A′ and b. If there exists a vector z> = [w>, x>p , x
>
m] ≥ 0 so that

A′z = b, then we have that A(xp − xm) ≤ b, so (i) holds. Otherwise, there must be a vector

y so that y>A′ ≥ 0 and y>b < 0, but then y ≥ 0 and y>A = 0 so (ii) holds. �

Linear Programming: Fix an m× n matrix A and vectors b ∈ Rm and c ∈ Rn. A linear

program and the associated dual are given as follows:

LP (primal) Dual

maximize c>x minimize y>b

s.t. Ax ≤ b s.t. y>A = c, y ≥ 0

We say that a point x (y) satisfying Ax ≤ b (y>A = c and y ≥ 0) is a feasible point

for the linear program (dual). If no such point exists the problem is called infeasible. If the

primal (dual) problem is feasible but has no maximum (minimum), it is called unbounded.

Observation 3 (Weak Duality) If x is feasible for the Linear Program and y is feasible

for the dual, then

c>x ≤ y>b

Proof: c>x = y>Ax ≤ y>b �

Note: It follows from the above that any feasible point in the dual gives an upper bound on

the primal problem (and vice versa). So, in particular, if the dual problem is feasible, then

the primal problem is bounded.
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Theorem 4 (Strong Duality) If the primal and dual problem are feasible, then the opti-

mum points x, y satisfy c>x = y>b.

Proof: Consider the following equation
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If there exist x, y satisfying the above equation, then Ax ≤ b so x is feasible, y ≥ 0 and

y>A = c> so y is feasible. Further −c>x + b>y ≤ 0 so y>b ≤ c>x and by Weak Duality

we must then have y>b = c>x and we are finished. Otherwise, by Corollary 2 there exists

[y>, λ, x>m, x
>
p , w

>] ≥ 0 satisfying

[y>, λ, x>m, x
>
p , w

>]



A 0

−c> b>

0 A>

0 −A>

0 −I


= 0 and [y>, λ, x>m, x

>
p , w

>]
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This gives the following:

y>A = λc> and y ≥ 0 (1)

A(xp − xm) ≤ λb (2)

y>b < c>(xp − xm) (3)

If λ > 0, then scaling the vector [y>, λ, x>m, x
>
p , w

>] by 1/λ we may assume that λ = 1.

However, then (1) and (2) show that xp − xm and y are feasible in the primal and dual

(respectively) and (3) contradicts Weak Duality.

Otherwise we have λ = 0. Now, by (3), either y>b < 0 or c>(xp−xm) > 0. In the former

case, we claim that the dual problem is unbounded (which contradicts the assumption that

the primal is feasible). To see this, let yf be any feasible point in the dual, let µ be a

positive number, and consider the vector yf + µy. We have yf + µy ≥ 0 and (yf + µy)>A =
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y>f A+µy>A = b>, so this vector is feasible in the dual, and (yf +µy)>b = y>f b+µ(y>b) can

be made arbitrarily small by choosing µ sufficiently large. If c>(xp − xm) > 0 then a similar

argument shows that the primal is unbounded (again giving us a contradiction). �


