Arkhipov's parity theorem

Motivated by some questions in quantum computing related to the Kochen-Specker theorem, Alex Arkhipov proved a lovely result in his Masters thesis which characterizes planar graphs. In this note we give a straightforward generalization of one direction of Arkhipov's theorem. This gives a kind of global "parity" condition for a type of flow-like function on an embedded planar graph.

For a digraph $D=(V, E)$, we view each edge $e \in E$ with tail u and head v as composed of two half-edges, one of which is incident to u and the other incident to v. So each half-edge h is incident to exactly one vertex, which we denote by v_{h}, and is contained in exactly one edge, which we denote by e_{h}. The sign of a half-edge h is defined to be

$$
\sigma(h)=\left\{\begin{array}{cl}
1 & \text { if } v_{h} \text { is the tail of } e_{h} \\
-1 & \text { if } v_{h} \text { is the head of } e_{h}
\end{array}\right.
$$

If D is embedded in an orientable surface, then each vertex v is endowed with a clockwise ordering of the incident half-edges. We describe this using a "rotation scheme" π : We let $\pi(v)=h_{1}, \ldots, h_{k}$ if the clockwise cyclic ordering of half-edges incident with v may be expressed as h_{1}, \ldots, h_{k} and then back to h_{1}. Naturally, we treat this rotation scheme as equivalent to that where $\pi(v)$ is replaced by $h_{2}, \ldots, h_{k}, h_{1}$ or any other cyclic shift.

Theorem 1 (Arkhipov) Let $D=(V, E)$ be a digraph embedded in the plane, let G be a group with centre Z, and let $\phi: E \rightarrow G$. Assume that every $v \in V$ with $\pi(v)=h_{1}, \ldots, h_{k}$ satisfies

$$
\phi(v)=\prod_{i=1}^{k} \phi\left(e_{h_{i}}\right)^{\sigma\left(h_{i}\right)} \in Z
$$

Note that in this case the product given by $\phi(v)$ is invariant under modifying $\pi(v)$ by a cyclic shift (as the new product is a conjugate of the original). In this case

$$
\prod_{v \in V} \phi(v)=1
$$

Here the order in which this product is computed does not matter as the elements all lie in Z.
Proof: We proceed by induction on $|E|$. As a base case, note that the result holds trivially when $|E|=0$. For the inductive step, first suppose there exists an edge e with distinct
endpoints u, v. Assume that $\pi(u)=h_{1}, \ldots, h_{k}$ and $\pi(v)=h_{1}^{\prime}, \ldots, h_{\ell}^{\prime}$ where $e_{h_{k}}=e=e_{h_{1}^{\prime}}$. Since $\sigma\left(h_{k}\right) \sigma\left(h_{1}^{\prime}\right)=-1$, we have

$$
\begin{aligned}
\phi(u) \phi(v) & =\phi\left(e_{h_{1}}\right)^{\sigma\left(h_{1}\right)} \ldots \phi\left(e_{h_{k}}\right)^{\sigma\left(h_{k}\right)} \phi\left(e_{h_{1}^{\prime}}\right)^{\sigma\left(h_{1}^{\prime}\right)} \ldots \phi\left(e_{h_{\ell}^{\prime}}\right)^{\sigma\left(h_{\ell}^{\prime}\right)} \\
& =\phi\left(e_{h_{1}}\right)^{\sigma\left(h_{1}\right)} \ldots \phi\left(e_{h_{k-1}}\right)^{\sigma\left(h_{k-1}\right)} \phi\left(e_{h_{2}^{\prime}}\right)^{\sigma\left(h_{2}^{\prime}\right)} \ldots \phi\left(e_{h_{\ell}^{\prime}}\right)^{\sigma\left(h_{\ell}^{\prime}\right)}
\end{aligned}
$$

Now consider the embedded digraph D / e obtained by contracting the edge e to form a new vertex w. The last term in the above equation is precisely $\phi(w)$ for this new vertex, so $\phi(w) \in Z$. By induction, the theorem is satisfied for D / e, and then (using the above equation) we find that the theorem also holds for D.

In the remaining case every edge is a loop, and by planarity, there must exist such an edge e incident with a vertex v so that the half-edges contained in e are consecutive at v. Assume that $\pi(v)=h_{1}, \ldots, h_{k}$ where $e_{h_{1}}=e=e_{h_{2}}$. Now $\sigma\left(h_{1}\right) \sigma\left(h_{2}\right)=-1$ so

$$
\phi(v)=\phi\left(e_{h_{1}}\right)^{\sigma\left(h_{1}\right)} \ldots \phi\left(e_{h_{k}}\right)^{\sigma\left(h_{k}\right)}=\phi\left(e_{h_{3}}\right)^{\sigma\left(h_{3}\right)} \ldots \phi\left(e_{h_{k}}\right)^{\sigma\left(h_{k}\right)}
$$

The result now follows from the above equation and induction on the digraph obtained from D by deleting the edge e.

