
Arkhipov’s parity theorem

Motivated by some questions in quantum computing related to the Kochen-Specker theorem,

Alex Arkhipov proved a lovely result in his Masters thesis which characterizes planar graphs.

In this note we give a straightforward generalization of one direction of Arkhipov’s theorem.

This gives a kind of global “parity” condition for a type of flow-like function on an embedded

planar graph.

For a digraph D = (V,E), we view each edge e ∈ E with tail u and head v as composed of

two half-edges, one of which is incident to u and the other incident to v. So each half-edge h

is incident to exactly one vertex, which we denote by vh, and is contained in exactly one

edge, which we denote by eh. The sign of a half-edge h is defined to be

σ(h) =

{
1 if vh is the tail of eh

−1 if vh is the head of eh

If D is embedded in an orientable surface, then each vertex v is endowed with a clockwise

ordering of the incident half-edges. We describe this using a “rotation scheme” π: We

let π(v) = h1, . . . , hk if the clockwise cyclic ordering of half-edges incident with v may be

expressed as h1, . . . , hk and then back to h1. Naturally, we treat this rotation scheme as

equivalent to that where π(v) is replaced by h2, . . . , hk, h1 or any other cyclic shift.

Theorem 1 (Arkhipov) Let D = (V,E) be a digraph embedded in the plane, let G be a

group with centre Z, and let φ : E → G. Assume that every v ∈ V with π(v) = h1, . . . , hk

satisfies

φ(v) =
k∏
i=1

φ (ehi)
σ(hi) ∈ Z.

Note that in this case the product given by φ(v) is invariant under modifying π(v) by a cyclic

shift (as the new product is a conjugate of the original). In this case∏
v∈V

φ(v) = 1.

Here the order in which this product is computed does not matter as the elements all lie in Z.

Proof: We proceed by induction on |E|. As a base case, note that the result holds trivially

when |E| = 0. For the inductive step, first suppose there exists an edge e with distinct
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endpoints u, v. Assume that π(u) = h1, . . . , hk and π(v) = h′1, . . . , h
′
` where ehk = e = eh′1 .

Since σ(hk)σ(h′1) = −1, we have

φ(u)φ(v) = φ (eh1)
σ(h1) . . . φ (ehk)σ(hk) φ

(
eh′1
)σ(h′1) . . . φ (eh′`)σ(h′`)

= φ (eh1)
σ(h1) . . . φ

(
ehk−1

)σ(hk−1) φ
(
eh′2
)σ(h′2) . . . φ (eh′`)σ(h′`)

Now consider the embedded digraph D/e obtained by contracting the edge e to form a

new vertex w. The last term in the above equation is precisely φ(w) for this new vertex,

so φ(w) ∈ Z. By induction, the theorem is satisfied for D/e, and then (using the above

equation) we find that the theorem also holds for D.

In the remaining case every edge is a loop, and by planarity, there must exist such an

edge e incident with a vertex v so that the half-edges contained in e are consecutive at v.

Assume that π(v) = h1, . . . , hk where eh1 = e = eh2 . Now σ(h1)σ(h2) = −1 so

φ(v) = φ (eh1)
σ(h1) . . . φ (ehk)σ(hk) = φ (eh3)

σ(h3) . . . φ (ehk)σ(hk)

The result now follows from the above equation and induction on the digraph obtained from

D by deleting the edge e. �


