
Fisher’s Theorem

Fix a simple digraph D = (V, E), let v ∈ V , and let k ∈ Z. If k ≥ 0 we let Nk
D(v) denote

the set of vertices at distance k from v, and if k < 0 we let Nk
D(v) denote the set of vertices

with distance −k to v. We define degk
D(v) = |Nk

D(v)|, and (as usual) we drop the subscripts

from these when the graph is clear from context. The purpose of this note is to prove the

following theorem which was originally conjectured by Dean.

Theorem 1 (Fisher) Every tournament has a vertex v with deg2(v) ≥ deg1(v).

We note that Seymour has conjectured that the above result holds more generally for

every digraph without a digon (directed cycle of length two), but this remains open. Our

proof of Fisher’s theorem requires the following key tool from linear programming. Here we

treat elements of Rk as column vectors.

Lemma 2 (Farkas) If B is a real m × n matrix and c ∈ Rn, exactly one of the following

holds.

(i) There exists x ∈ Rm with x ≥ 0 so that Bx = c.

(ii) There exists y ∈ Rn so that y>B ≥ 0 and y>c < 0.

We say that a probability distribution p : V → R losing if p(N1(v)) ≥ p(N−1(v)) for

every vertex v.

Lemma 3 If D has no digon, then it has a losing distribution.

Proof: Let V = {v1, v2, . . . , vn} and let A = {ai,j}i,j∈{1,...,n} be the matrix given by the rule

ai,j =





−1 if (vi, vj) ∈ E

1 if (vj, vi) ∈ E

0 otherwise

Let 1 (0) denote the vector in Rn of 1’s (0’s). Note that a losing distribution is precisely a

vector p ∈ Rn with p ≥ 0, p>1 = 1 and Ap ≤ 0. Now, consider the following equation with

variables p, s ∈ Rn [
A I

1> 0>

][
p

s

]
=

[
0

1

]
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If there exists a solution to the equation with p, s ≥ 0, then p is a losing distribution and we

are done. Otherwise, it follows from Farkas’ Lemma that there exists q ∈ Rn and t ∈ R so

that

[q>t]

[
A> I

1> 0>

]
≥ 0 and [q>t]

[
0

1

]
< 0.

However, in this case we must have q ≥ 0 and t < 0 and these imply further that q>A ≥ 0.

But then 0 ≤ A>q = −Aq so q is a nonnegative vector with Aq ≤ 0 and then 1
1>q

q is a losing

distribution. This completes the proof. ¤

Observation 4 If k ∈ Z, and we choose u ∈ V according to the probability distribution

p : V → R, then

E(degk(u)) =
∑
w∈V

p(N−k(w))

Proof: We shall assume k ≥ 0, the other case is similar.

E(degk(u)) =
∑
v∈V

p(v)degk(v)

=
∑

v,w∈V :dist(v,w)=k

p(v)

=
∑
w∈V

p(N−k(w)). ¤

Proof of Fisher’s Theorem: Let D = (V, E) be a tournament. By Lemma 3, we may

choose a losing distribution p : V → R. We shall show that if a vertex u is chosen according

to this distribution, then the expected size of deg2(u) is at least the expected size of deg1(u).

By the previous observation, to do this, it suffices to show the following.

Claim: p(N−2(u)) ≥ p(N−1(u)) for every u ∈ V .

To prove the claim, let u ∈ V , let R = {u}∪N−1(u)∪N−2(u), and let Q be the tournament

T −R. If the total weight on the vertices in Q is zero, then we have p(N−2(u)) = p(N1(u)) ≥
p(N−1(u)). Thus, we may assume p(V (Q)) ≥ 0. It follows immediately from

∑

w∈V (Q)

p(w)(p(N1
Q(w))− p(N−1

Q (w))) =
∑

(w,x)∈E(Q)

p(w)p(x)−
∑

(y,w)∈E(Q)

p(w)p(y) = 0
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that there exists a vertex w ∈ V (Q) so that p(N−1
Q (w)) ≥ p(N1

Q(w)). Now, w must satisfy

p(N1(w)) ≥ p(N−1)(w) since p is losing, but then we must have

p(N1(w) ∩R) ≥ p(N−1(w) ∩R). (1)

Since w 6∈ N−2(u) ∪N−1(u) we have

N1(w) ∩R ⊆ N−2(u). (2)

Now, combining (1) and (2) yields

p(N−2(u)) ≥ p(N1(w) ∩R) ≥ p(N−1(w) ∩R) ≥ p(N−1(u))

which completes the proof. ¤


