
Kneser’s Addition Theorem

Throughout we shall assume that G is an additive abelian group. If A,B ⊆ G and g ∈ G,

then A + B = {a + b | a ∈ A and b ∈ B} and A + g = g + A = {a + g | a ∈ A}. We define

the stabilizer of A to be S(A) = {g ∈ G | A + g = A}. Note that S(A) ≤ G. Our goal here

is to prove the following theorem.

Theorem 1 (Kneser) If A,B ⊆ G are finite and nonempty and K = S(A+B), then

|A+B| ≥ |A+K|+ |B +K| − |K|.

Proof. We proceed by induction on |A + B| + |A|. Suppose that K 6= {0} and let φ :

G → G/K be the canonical homomorphism. Then S(φ(A + B)) is trivial, so by applying

induction to φ(A), φ(B) we have

|A+B| = |K|(|φ(A) + φ(B)|) ≥ |K|(|φ(A)|+ |φ(B)| − 1) = |A+K|+ |B +K| − |K|.

Thus, we may assume K = {0}. If |A| = 1, then the result is trivial, so we may assume

|A| > 1 and choose distinct a, a′ ∈ A. Since a′−a 6∈ S(A+B) ⊇ S(B), we may choose b ∈ B
so that b+ a′ − a 6∈ B. Now by replacing B by B − b+ a we may assume ∅ 6= A ∩B 6= A.

Let C ⊆ A+B and let H = S(C). We call C a convergent if

|C|+ |H| ≥ |A ∩B|+ |(A ∪B) +H|.

Set C0 = (A∩B) + (A∪B) and observe that C0 ⊆ A+B. Since 0 < |A∩B| < |A|, we may

apply induction to A∩B and A∪B to conclude that C0 is a convergent. Thus a convergent

exists, and we may now choose a convergent C with H = S(C) minimal. If H = {0} then

|A + B| ≥ |C| ≥ |A ∩ B| + |A ∪ B| − |{0}| = |A| + |B| − 1 and we are finished. So, we

may assume H 6= {0} (and proceed toward a contradiction). Since S(A + B) = {0} and

S(C) = H, we may choose a ∈ A and b ∈ B so that a+b+H 6⊆ A+B. Let A1 = A∩(a+H),

A2 = A ∩ (b + H), B1 = B ∩ (b + H), and B2 = B ∩ (a + H) and note that A1, B1 6= ∅.
For i = 1, 2 let Ci = C ∪ (Ai + Bi) and let Hi = S(Ai + Bi). Observe that if Ai, Bi 6= ∅,
then Hi = S(Ci) < H. The following equation holds for i = 1, and it also holds for i = 2 if

A2, B2 6= ∅. It follows from the fact that Ci is not a convergent (by the minimality of H),
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and induction applied to Ai, Bi.

|(A ∪B) +H| − |(A ∪B) +Hi| < (|C|+ |H| − |A ∩B|)− (|Ci|+ |Hi| − |A ∩B|)

= |H| − |Ai +Bi| − |Hi|

≤ |H| − |Ai +Hi| − |Bi +Hi| (1)

If B2 = ∅, then |(A ∪ B) +H| − |(A ∪ B) +H1| ≥ |(a+H) \ (A1 +H1)| = |H| − |A1 +H1|
contradicts equation 1 for i = 1. We get a similar contradiction under the assumption that

A2 = ∅. Thus A2, B2 6= ∅ and equation 1 holds for i = 1, 2. If a+H = b+H, then A1 = A2

and B1 = B2 and we have |(A∪B) +H| − |(A∪B) +H1| ≥ |(a+H) \ ((A1 ∪B1) +H1)| ≥
|H|−|A1+H1|−|B1+H1| which contradicts equation 1. Therefore, a+H 6= b+H. Our next

inequality follows from the observation that the left hand side of equation 1 is nonnegative,

and all terms on the right hand side are multiples of |Hi|.

|H| ≥ |Ai|+ |Bi|+ |Hi| (2)

Let S = (a+H)\ (A1∪B2) and T = (b+H)\ (A2∪B1), and note that S and T are disjoint.

The next equation follows from the fact that A + B is not a convergent (by the minimality

of H), and induction applied to Ai, Bi.

|H| ≥ |(A ∪B) +H|+ |A ∩B| − |C|

≥ |S|+ |T |+ |A ∪B|+ |A ∩B| − |A+B|+ |Ai +Bi|

> |S|+ |T |+ |Ai|+ |Bi| − |Hi| (3)

Summing the four inequalities obtained by taking equations 2 and 3 for i = 1, 2 and then

dividing by two yields 2|H| > |A1|+|B2|+|S|+|A2|+|B1|+|T |. However, a+H = S∪A1∪B2

and b+H = T ∪ A2 ∪B1. This final contradiction completes the proof. �


