Kneser’s Addition Theorem

Throughout we shall assume that G is an additive abelian group. If A, B C G and g € G,
then A+ B={a+blacAandbe B} and A+g=9g+A={a+g|aec A}. We define
the stabilizer of A to be S(A) ={g € G| A+ g = A}. Note that S(A) < G. Our goal here

is to prove the following theorem.
Theorem 1 (Kneser) If A, B C G are finite and nonempty and K = S(A + B), then
|A+ B| > |A+ K|+ |B+ K| — |K|.

Proof. We proceed by induction on |A + B| + |A|. Suppose that K # {0} and let ¢ :
G — G/K be the canonical homomorphism. Then S(¢(A + B)) is trivial, so by applying
induction to ¢(A), p(B) we have

|A+ Bl = [K[(l¢(A) + ¢(B)]) = [K[(I¢(A)] + [6(B)] = 1) = |[A+ K| + B + K| — | K].

Thus, we may assume K = {0}. If |A| = 1, then the result is trivial, so we may assume

|A| > 1 and choose distinct a,a’ € A. Since ' —a ¢ S(A+ B) 2 S(B), we may choose b € B

so that b+ a’ — a € B. Now by replacing B by B — b+ a we may assume () # AN B # A.
Let C C A+ B and let H =8(C). We call C' a convergent if

|IC|+ |H| > |ANB|+ |[(AUB) + H|.

Set Co = (AN B) + (AU B) and observe that Cy C A+ B. Since 0 < |AN B| < |A]|, we may
apply induction to AN B and AU B to conclude that Cj is a convergent. Thus a convergent
exists, and we may now choose a convergent C' with H = S(C') minimal. If H = {0} then
|A+B| > |C| > |AnB|+ |AU B| — |{0}| = |A| + |B| — 1 and we are finished. So, we
may assume H # {0} (and proceed toward a contradiction). Since S(A + B) = {0} and
S(C) = H, we may choose a € Aand b € Bso that a+b+H € A+B. Let Ay = AN(a+H),
Ay =AN(b+H), Bp=BnNn(b+ H), and By = BN (a+ H) and note that Ay, By # 0.
For i = 1,2 let C; = C' U (4; + B;) and let H; = S(A; + B;). Observe that if A;, B; # 0,
then H; = §(C;) < H. The following equation holds for i = 1, and it also holds for i = 2 if
Ay, By # (). Tt follows from the fact that C; is not a convergent (by the minimality of H),



and induction applied to A;, B;.

(AUB)+ H| - [(AUB)+ H;| < (|[C]+|H|-|ANBJ) - (|Ci| + |H;| — |AN B|)
= |H| - |A; + B;| — |H,|
< |H|—|A; + H;| — |B; + Hy| (1)

If By =10, then [(AUB)+ H|—|[(AUB)+ Hy| > |(a+ H) \ (A1 + Hy)| = |H| — |A1 + H;|
contradicts equation 1 for : = 1. We get a similar contradiction under the assumption that
Ay = (). Thus Ay, By # 0 and equation 1 holds for i = 1,2. If a+ H = b+ H, then A; = A,
and By = By and we have |(AUB) + H| — |(AUB) + Hi| > |(a+ H) \ (A1 U By) + Hy)| >
|H|—|A;+ Hy|—| B+ Hy| which contradicts equation 1. Therefore, a+ H # b+ H. Our next
inequality follows from the observation that the left hand side of equation 1 is nonnegative,

and all terms on the right hand side are multiples of | H;|.
[H| = [Ai + [Bil + [H] (2)

Let S = (a+ H)\ (A1UBsy) and T = (b+ H) \ (A2U By), and note that S and T" are disjoint.
The next equation follows from the fact that A + B is not a convergent (by the minimality
of H), and induction applied to A;, B;.

|Hl > |(AUB)+ H|+|ANnB|—|C|
S|+ |T|+|AUB|+ |ANB|— |A+ B| + |A; + By
> |S[+T| + |Ail + [Bi] — [Hi| (3)

vV

Summing the four inequalities obtained by taking equations 2 and 3 for ¢ = 1,2 and then
dividing by two yields 2| H| > |A;|+|Bz|+|S|+|Az|+|B1|+|T|. However, a+H = SUA;UB,
and b+ H =T U Ay U B;. This final contradiction completes the proof. O



