Kneser's Addition Theorem

Throughout we shall assume that G is an additive abelian group. If $A, B \subseteq G$ and $g \in G$, then $A+B=\{a+b \mid a \in A$ and $b \in B\}$ and $A+g=g+A=\{a+g \mid a \in A\}$. We define the stabilizer of A to be $\mathcal{S}(A)=\{g \in G \mid A+g=A\}$. Note that $\mathcal{S}(A) \leq G$. Our goal here is to prove the following theorem.

Theorem 1 (Kneser) If $A, B \subseteq G$ are finite and nonempty and $K=\mathcal{S}(A+B)$, then

$$
|A+B| \geq|A+K|+|B+K|-|K|
$$

Proof. We proceed by induction on $|A+B|+|A|$. Suppose that $K \neq\{0\}$ and let ϕ : $G \rightarrow G / K$ be the canonical homomorphism. Then $\mathcal{S}(\phi(A+B))$ is trivial, so by applying induction to $\phi(A), \phi(B)$ we have

$$
|A+B|=|K|(|\phi(A)+\phi(B)|) \geq|K|(|\phi(A)|+|\phi(B)|-1)=|A+K|+|B+K|-|K| .
$$

Thus, we may assume $K=\{0\}$. If $|A|=1$, then the result is trivial, so we may assume $|A|>1$ and choose distinct $a, a^{\prime} \in A$. Since $a^{\prime}-a \notin \mathcal{S}(A+B) \supseteq \mathcal{S}(B)$, we may choose $b \in B$ so that $b+a^{\prime}-a \notin B$. Now by replacing B by $B-b+a$ we may assume $\emptyset \neq A \cap B \neq A$.

Let $C \subseteq A+B$ and let $H=\mathcal{S}(C)$. We call C a convergent if

$$
|C|+|H| \geq|A \cap B|+|(A \cup B)+H|
$$

Set $C_{0}=(A \cap B)+(A \cup B)$ and observe that $C_{0} \subseteq A+B$. Since $0<|A \cap B|<|A|$, we may apply induction to $A \cap B$ and $A \cup B$ to conclude that C_{0} is a convergent. Thus a convergent exists, and we may now choose a convergent C with $H=\mathcal{S}(C)$ minimal. If $H=\{0\}$ then $|A+B| \geq|C| \geq|A \cap B|+|A \cup B|-|\{0\}|=|A|+|B|-1$ and we are finished. So, we may assume $H \neq\{0\}$ (and proceed toward a contradiction). Since $\mathcal{S}(A+B)=\{0\}$ and $\mathcal{S}(C)=H$, we may choose $a \in A$ and $b \in B$ so that $a+b+H \nsubseteq A+B$. Let $A_{1}=A \cap(a+H)$, $A_{2}=A \cap(b+H), B_{1}=B \cap(b+H)$, and $B_{2}=B \cap(a+H)$ and note that $A_{1}, B_{1} \neq \emptyset$. For $i=1,2$ let $C_{i}=C \cup\left(A_{i}+B_{i}\right)$ and let $H_{i}=\mathcal{S}\left(A_{i}+B_{i}\right)$. Observe that if $A_{i}, B_{i} \neq \emptyset$, then $H_{i}=\mathcal{S}\left(C_{i}\right)<H$. The following equation holds for $i=1$, and it also holds for $i=2$ if $A_{2}, B_{2} \neq \emptyset$. It follows from the fact that C_{i} is not a convergent (by the minimality of H),
and induction applied to A_{i}, B_{i}.

$$
\begin{align*}
|(A \cup B)+H|-\left|(A \cup B)+H_{i}\right| & <(|C|+|H|-|A \cap B|)-\left(\left|C_{i}\right|+\left|H_{i}\right|-|A \cap B|\right) \\
& =|H|-\left|A_{i}+B_{i}\right|-\left|H_{i}\right| \\
& \leq|H|-\left|A_{i}+H_{i}\right|-\left|B_{i}+H_{i}\right| \tag{1}
\end{align*}
$$

If $B_{2}=\emptyset$, then $|(A \cup B)+H|-\left|(A \cup B)+H_{1}\right| \geq\left|(a+H) \backslash\left(A_{1}+H_{1}\right)\right|=|H|-\left|A_{1}+H_{1}\right|$ contradicts equation 1 for $i=1$. We get a similar contradiction under the assumption that $A_{2}=\emptyset$. Thus $A_{2}, B_{2} \neq \emptyset$ and equation 1 holds for $i=1$, 2 . If $a+H=b+H$, then $A_{1}=A_{2}$ and $B_{1}=B_{2}$ and we have $|(A \cup B)+H|-\left|(A \cup B)+H_{1}\right| \geq\left|(a+H) \backslash\left(\left(A_{1} \cup B_{1}\right)+H_{1}\right)\right| \geq$ $|H|-\left|A_{1}+H_{1}\right|-\left|B_{1}+H_{1}\right|$ which contradicts equation 1. Therefore, $a+H \neq b+H$. Our next inequality follows from the observation that the left hand side of equation 1 is nonnegative, and all terms on the right hand side are multiples of $\left|H_{i}\right|$.

$$
\begin{equation*}
|H| \geq\left|A_{i}\right|+\left|B_{i}\right|+\left|H_{i}\right| \tag{2}
\end{equation*}
$$

Let $S=(a+H) \backslash\left(A_{1} \cup B_{2}\right)$ and $T=(b+H) \backslash\left(A_{2} \cup B_{1}\right)$, and note that S and T are disjoint. The next equation follows from the fact that $A+B$ is not a convergent (by the minimality of H), and induction applied to A_{i}, B_{i}.

$$
\begin{align*}
|H| & \geq|(A \cup B)+H|+|A \cap B|-|C| \\
& \geq|S|+|T|+|A \cup B|+|A \cap B|-|A+B|+\left|A_{i}+B_{i}\right| \\
& >|S|+|T|+\left|A_{i}\right|+\left|B_{i}\right|-\left|H_{i}\right| \tag{3}
\end{align*}
$$

Summing the four inequalities obtained by taking equations 2 and 3 for $i=1,2$ and then dividing by two yields $2|H|>\left|A_{1}\right|+\left|B_{2}\right|+|S|+\left|A_{2}\right|+\left|B_{1}\right|+|T|$. However, $a+H=S \cup A_{1} \cup B_{2}$ and $b+H=T \cup A_{2} \cup B_{1}$. This final contradiction completes the proof.

