
Rado Matroids

Throughout we let G be a bipartite graph with bipartition (X, Y ) and we let M denote a

matroid on Y with rank function r. Our goal is to study a natural matroid which is induced

on X by this structure. Since this matroid was first discovered by Rado, we shall call this

the Rado matroid. We will define this matroid with our first proposition, and then present

two theorems about it which generalize classical theorems of Hall and König on bipartite

graphs. Indeed, our presentation is done in the setting of bipartite graphs so as to emphasize

this connection. As a consequence of our main theorem we also derive the Matroid Union

Theorem.

Proposition 1 Let C be the collection of all minimal subsets S of X which satisfy r(N(S)) <

|S|. Then C is the set of circuits of a matroid called the Rado matroid on X.

Proof: If C1, C2 ∈ C are distinct then we have the following inequality (here the last step

follows from the observation that C1 ∩ C2 does not include any member of C)

|C1 ∪ C2|+ |C1 ∩ C2| − 2 = |C1|+ |C2| − 2

≥ r(N(C1)) + r(N(C2))

≥ r(N(C1) ∪N(C2)) + r(N(C1) ∩N(C2))

≥ r(N(C1 ∪ C2)) + r(N(C1 ∩ C2))

≥ r(N(C1 ∪ C2)) + |C1 ∩ C2|.

This implies r(N(C1 ∪ C2)) ≤ |C1 ∪ C2| − 2. If there exists e ∈ C1 ∪ C2 then setting

C = (C1 ∪ C2) \ {e} we have

r(N(C)) ≤ r(N(C1 ∪ C2)) ≤ |C1 ∪ C2| − 2 = |C| − 1

which implies that C must include a member of C. Thus C obeys the circuit axioms, and

this completes the proof. �

Let us remark that in the special case when the original matroid on Y has no dependent

sets, the Rado matroid on X is known as a transversal matroid. For transversal matroids,

the following proposition is equivalent to Hall’s theorem on perfect matchings (since in this

case a set S ⊆ X is independent if and only if |N(R)| ≥ |R| for all R ⊆ S).
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Theorem 2 (Rado) A set S ⊆ X is independent if and only if there exists T ⊆ Y so that

the subgraph induced by S ∪ T has a perfect matching and further T is independent.

Proof: The “if” direction is immediate. For the “only if” direction, we proceed by induction

on |S| with the base case |S| = 0 holding trivially. First consider the case that r(N(R)) > |R|
for every nonempty proper subset R ⊆ S. Then, choose e ∈ S and choose a non-loop

f ∈ N(e) (this is possible since S is independent). Now define a new graph G′ = G− {e, f}
and a new matroid M ′ = M/f and consider the Rado matroid on X \ {e} from G′ and M ′.

We claim that S ′ = S \ {e} is independent in this new matroid. To see this, note that for

every R ⊆ S ′ we have rM ′(NG′(R)) ≥ rM(NG(R)) − 1 ≥ |R|. Therefore, by induction, we

may choose a set T ′ ⊆ Y \ {f} so that the graph induced by S ′ ∪ T ′ has a perfect matching

and T ′ is independent in M/f . But then T = T ′∪{f} is independent in M and has a perfect

matching to S.

Next consider the case that S0 ⊂ S is nonempty and r(N(S0)) = |S0|. Now, by induction,

we may choose a set T0 ⊆ Y so that the graph induced by S0 ∪ T0 has a perfect matching

and T0 is independent in M . Then, we modify G to form G′ by deleting the S0 ∪ T0, we

define the matroid M ′ = M/T0 on Y ′ = Y \ T0 and we consider as well the new Rado

matroid on X ′ = X \ S0. As before, we claim that S ′ = S \ S0 is independent in this new

matroid. To see this, let R ⊆ S ′ and note that rM ′(NG′(R)) = rM(NG′(R) ∪ T0) − |T0| =

rM(NG(R ∪ S0))− |S0| ≥ |R|. So, by induction we may choose a set T ′ ⊆ Y ′ so that G′ has

a perfect matching between S ′ and T ′ and so that T ′ is independent in M ′. But then T0∪T ′

has a perfect matching to S and is independent in M . �

Corollary 3 (Matroid Union) Let M1,M2, . . . ,Mk be matroids on E and let I be the

collection of all X ⊆ E for which there exist disjoint sets X1, . . . , Xk so that Xi is independent

in Mi and ∪k
i=1Xi = X. Then I is the set of independent sets of a matroid called the union

of M1 . . .Mk.

Proof: Let E1, E2, . . . , Ek be disjoint copies of E, set Y = ∪k
i=1Ei and call a set S ⊆ Y

independent if S ∩Ei corresponds to an independent set in Mi. It follows immediately from

the independent set axioms that these are the independent sets of a matroid on Y . Now,

construct a graph G with bipartition (E, Y ) by connecting every e ∈ E to each copy of

this element. It now follows from the previous theorem that I is precisely the collection of

independent sets of the Rado matroid on E. �
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König’s Theorem gives the following simple characterization for our bipartite graph G:

The size of a largest matching is equal to the size of a minimum vertex cover. Equivalently,

there exists A ⊆ X so that the size of the largest matching is equal to |X \A|+ |N(A)|. The

following theorem gives an analogous result in our more general framework. In this setting,

we call a matching in G independent if the set of vertices which it covers in Y is independent

(from which it follows that the set of vertices it covers in X will also be independent).

Theorem 4 (Rado) There exists A ⊆ X so that the size of the largest independent match-

ing is equal to |X \ A|+ r(N(A)).

Proof: Define the deficiency of a set S ⊆ X to be |S| − r(N(S)). Let d be the maximum

deficiency of a subset of X and note that d ≥ 0 since ∅ has deficiency 0. We shall prove that

the largest independent matching in G has size |X| − d by proving both inequalities.

To see that there is an independent matching of size at least |X| − d we construct a new

graph G′ with bipartition (X, Y ′) from G by adding a set Z of d new vertices to Y (thus

forming Y ′) and then adding an edge between every point in X and every point in Z. Then,

we modify the matroid M on Y to get a matroid M ′ on Y ′ by adding each element in Z as

a coloop (so the bases in M ′ consist of bases in M union with Z). Now for every S ⊆ X we

have rM ′(NG′(S)) = rM(NG(S)) + d so X is an independent set in the Rado matroid on X

given by G′ and M ′. Thus there exists an independent matching µ′ in G′ which covers X.

Let µ be obtained from µ′ by removing any edge incident with a point in Z. Then µ is an

independent matching in G with size at least |X| − d.

To see that every independent matching has size at most |X|−d just consider a particular

set A of deficiency d. Every independent matching will fail to cover at least d vertices of A

so will have size at most |X| − d. Now, to complete the proof, observe that the size of the

largest independent matching is |X| − d = |X \ A|+ |A| − d = |X \ A|+ r(N(A)). �

Corollary 5 For every S ⊆ X the rank of S is given by

r(S) = min
A⊆S
|S \ A|+ r(N(A)).

Proof: Modify G by deleting all vertices in X \ S. The rank of S is then equal to the size of

the largest independent matching in this new graph. By the previous theorem, this is given

by the above formula. �


