Restricted Bases

Our goal is to give a proof of the following theorem which implies the existence of a basis of a matroid satisfying certain added restrictions, under the assumption that a suitable fractional basis (a term we define shortly) exists. The key idea in the proof is a pretty recursive process due to Kamal Jain.

Theorem 1 (Király, Lau, Singh) Let M be a matroid on E, let $x \in \mathbb{R}^{E}$ be a fractional basis, and let \mathcal{F} be a collection of subsets of E so that every $e \in E$ is contained in at most d members of \mathcal{F}. Then there exists a basis B so that every $F \in \mathcal{F}$ satisfies

$$
|B \cap F| \leq\lceil x(F)\rceil+d-1
$$

This theorem has numerous applications such as the following.
Corollary 2 Every r-regular r-edge-connected graph has a spanning tree of max degree ≤ 3. Sketch of Proof: Let $G=(V, E)$ be such a graph with $|V|=n$ and define the vector $x \in \mathbb{R}^{E}$ by the rule that $x(e)=\frac{2(n-1)}{n r}$. It follows from the edge-connectivity of G that x is a fractional spanning tree (i.e. a fractional basis for the cycle matroid). Furthermore, for every $v \in V$ the set $\delta(v)=\{e \in E \mid e \sim v\}$ has the property that $x(\delta(v))=\frac{2(n-1)}{n} \leq 2$. So, setting $\mathcal{F}=\{\delta(v) \mid v \in V\}$ we may apply the theorem to the cycle matroid of G for the vector x, the collection \mathcal{F} and $d=2$. The result is a spanning tree of G which has maximum degree ≤ 3 as desired.

The proof of the theorem involves a polyhedral argument which relies on a basic (but important!) fact about systems of linear equations which we give next. For any set of vectors X in Euclidean space we let $\operatorname{rank}(X)$ denote the dimension of the subspace spanned by X. Proposition 3 Let A be a real matrix indexed by $S \times T$, let $b \in \mathbb{R}^{S}$, and let P be be the polyhedron defined by the following system of linear equations for $x \in \mathbb{R}^{T}$

$$
\begin{aligned}
x & \geq 0 \\
A x & \leq b
\end{aligned}
$$

Let y be a vertex of P. For every $s \in S$ let $A_{\text {s }}$ denote the row of A indexed by s, and call s tight if $A_{s} y=b_{s}$. Then we have

$$
|\operatorname{supp}(y)| \leq \operatorname{rank}\left(\left\{A_{s} \mid s \text { is tight }\right\}\right) .
$$

Proof: Let A^{\prime} be the submatrix of A consisting of those rows A_{s} for which s is tight and suppose (for a contradiction) that $|\operatorname{supp}(y)|>\operatorname{rank}\left(A^{\prime}\right)$. In this case, it follows from dimension considerations that there must exist a nonzero vector $z \in \mathbb{R}^{T}$ in the nullspace of A^{\prime} for which $\operatorname{supp}(z) \subseteq \operatorname{supp}(y)$. Now consider the vector $y^{\prime}=y+\delta z$ for $\delta \in \mathbb{R}$. For every tight constraint s we have $A_{s} y^{\prime}=A_{s}(y+\delta z)=A_{s} y=b_{s}$ so y^{\prime} will still satisfy all of the tight constraints. It follows from this that there exists $\epsilon>0$ so that $y^{\prime} \in P$ whenever $|\delta|<\epsilon$. However, this contradicts the assumption that y is a vertex of P (as we have found a line segment contained in P which has y in its interior).

Basis Polytope: Let M be a matroid on E with rank function r. We define the basis polytope of M, denoted $P(M)$, to be the set of all $x \in \mathbb{R}^{E}$ which satisfy the following system of constraints.

1. $x \geq 0$.
2. $x(S) \leq r(S)$ for every closed set $S \subseteq E$.
3. $x(E) \geq r(E)$.

Observe that the type 2 constraints imply that every $x \in P(G)$ satisfies $x \leq 1$. Furthermore, the $\{0,1\}$ valued points in $P(M)$ are precisely the characteristic vectors of bases, so we shall call arbitrary elements of $P(M)$ fractional bases. As usual, if $x \in P(M)$ and $x(S)=r(S)$ for some closed set S we say that S is tight with respect to x. Our next lemma gives an important dimension restriction on the family of tight sets. Here we let $\mathbb{1}_{S}$ denote the characteristic vector of a subset $S \subseteq E$.

Lemma 4 Let M be a loopless nonempty matroid and let $x \in P(M)$, then

$$
\operatorname{rank}\left(\left\{\mathbb{1}_{R} \mid R \subseteq E \text { is tight }\right\}\right) \leq r(M)
$$

Proof: We proceed by induction on $r(M)$. It is immediate from the definition that \emptyset and E are tight constraints. If there are no other tight constraints, then the equation follows from $r(M)>0$. Otherwise, let $S \subseteq E$ be a minimal nonempty (closed) set which is tight. If T is any other tight set then we have

$$
r(S \cap T)+r(S \cup T) \leq r(S)+r(T)=x(S)+x(T)=x(S \cap T)+x(S \cup T)
$$

so it follows that both $S \cap T$ and $S \cup T$ are tight. Since S is minimal, it must be that every tight set T satisfies either $S \subseteq T$ or $S \cap T=\emptyset$. Now, consider the matroid $M^{\prime}=M / S$ on $E^{\prime}=E \backslash S$ and the vector $x^{\prime}=\left.x\right|_{E^{\prime}}$. For every $T \subseteq E\left(M^{\prime}\right)$ we have

$$
r_{M^{\prime}}(T)=r_{M}(S \cup T)-r(S) \geq x(S \cup T)-x(S)=x^{\prime}(T)
$$

with equality if and only if $S \cup T$ is tight in M. It follows from this that $x^{\prime} \in P\left(M^{\prime}\right)$. Now, choose a collection of tight sets $T_{1}, T_{2}, \ldots, T_{k}$ in M^{\prime} relative to x^{\prime} so that $\left\{\mathbb{1}_{T_{1}}, \mathbb{1}_{T_{2}}, \ldots \mathbb{1}_{T_{k}}\right\}$ is a basis of the space $\left\langle\left\{\mathbb{1}_{T} \mid T \subseteq E^{\prime}\right.\right.$ is tight for x^{\prime} (in $\left.\left.\left.M^{\prime}\right)\right\}\right\rangle$. We claim that the set $\left\{\mathbb{1}_{S}, \mathbb{1}_{S \cup T_{1}}, \ldots, \mathbb{1}_{S \cup T_{k}}\right\}$ is a basis for the space $\left\langle\left\{\mathbb{1}_{R} \mid R \subseteq E\right.\right.$ is tight for x (in $\left.\left.\left.M\right)\right\}\right\rangle$. To see this, let $R \subseteq E$ be tight with respect to x. Now $R \cup S$ is tight with respect to x so $R \backslash S$ is tight with respect to x^{\prime}. Thus we may choose $a_{i} \in \mathbb{R}$ so that $\mathbb{1}_{R \backslash S}=\sum_{i=1}^{k} a_{i} \mathbb{1}_{T_{i}}$. Since R either contains S or is disjoint from S, it follows that there exists $b \in \mathbb{R}$ so that $\mathbb{1}_{R}=b \mathbb{1}_{S}+\sum_{i=1}^{k} a_{i} \mathbb{1}_{S \cup T_{i}}$ thus proving the claim. Now the desired bound follows by induction and the following inequality

$$
\operatorname{rank}\left(\left\{\mathbb{1}_{R} \mid R \subseteq E \text { is tight }\right\}\right) \leq k+1 \leq r\left(M^{\prime}\right)+1 \leq r(M) .
$$

To help solidify our understanding, let's combine our last two results. First let us note that the following is an equivalent description of the linear system for $P(M)$ (here $\left.x \in \mathbb{R}^{E}\right)$.

1. $x \geq 0$.
2. $\mathbb{1}_{S}^{\top} x \leq r(S)$ for every closed set $S \subseteq E$.
3. $-\mathbb{1}_{E}^{\top} x \leq-r(E)$.

We have the constraints $\mathbb{1}_{E}^{\top} x \leq r(E)$ and $-\mathbb{1}_{E}^{\top} x \leq-r(E)$ which will both be tight. However, in terms of the rank of the set of tight constraints, these two correspond to the same vector $\mathbb{1}_{E}$. Therefore, by the previous lemma and Proposition 3, every vertex $x \in P(M)$ satisfies $|\operatorname{supp}(x)| \leq r(M)$. Since $x \leq 1$ we also have $r(M)=x(E) \leq|\operatorname{supp}(x)|$. This yields the following theorem of Edmonds.

Theorem 5 (Edmonds) Every vertex of $P(M)$ is the characteristic vector of a basis.
Returning to our central purpose, we shall require the following technical lemma before we can prove the main theorem.

Lemma 6 Let M be a matroid on E let $x \in \mathbb{R}^{E}$ satisfy $0<x(e)<1$ for every $e \in E$ and $x(E)=r(M)$. Let \mathcal{F} be a collection of subsets of E and assume the following conditions are satisfied.

- Every $F \in \mathcal{F}$ satisfies $x(F) \in \mathbb{Z}$.
- Every $e \in E$ is contained in at most d members of \mathcal{F}.
- $|\mathcal{F}| \geq r^{*}(M)$.

Then either there exists $F \in \mathcal{F}$ with $x(F) \geq|F|-d+1$ or the following holds: Every element in E is covered exactly d times by members of \mathcal{F}, every $F \in \mathcal{F}$ satisfies $x(F)=|F|-d$, and $|\mathcal{F}|=r^{*}(M)$.

Proof: For every $e \in E$ let d_{e} be the number of sets in \mathcal{F} which contain e. We may assume that $x(F)<|F|-d+1$ for every $F \in \mathcal{F}$ (otherwise we are finished) and then by the integrality of $x(F)$ we have $x(F) \leq|F|-d$ for every $F \in \mathcal{F}$. This yields

$$
\sum_{F \in \mathcal{F}} x(F) \leq \sum_{F \in \mathcal{F}}(|F|-d)=\sum_{F \in \mathcal{F}}|F|-d|\mathcal{F}| \leq \sum_{F \in \mathcal{F}}|F|-d \cdot r^{*}(M)
$$

and rearranging gives the first inequality in the following chain.

$$
d \cdot r^{*}(M) \leq \sum_{F \in \mathcal{F}}(|F|-x(F))=\sum_{e \in E} d_{e}(1-x(e)) \leq d \sum_{e \in E}(1-x(e))=d \cdot r^{*}(M) .
$$

Thus all inequalities in the above equations are tight, so $d_{e}=d$ for every $e \in E$ from the second equation, and $x(F)=|F|-d$ for every $F \in \mathcal{F}$ and $|\mathcal{F}|=r^{*}(M)$ from the first.

Proof of Theorem 1: For every $F \in \mathcal{F}$ let $q_{F}=\lceil x(F)\rceil$. Our proof will proceed by constructing a sequence of nonempty polyhedra Q_{0}, Q_{1}, \ldots where Q_{i} is defined by the following system using sets $E_{i}^{0}, E_{i}^{1} \subseteq E$ and $\mathcal{F}_{i} \subseteq \mathcal{F}$.

1. $y \in P(M)$.
2. $y(F) \leq q_{F}$ for every $F \in \mathcal{F}_{i}$.
3. $y(e)=0$ for every $e \in E_{i}^{0}$.
4. $y(e)=1$ for every $e \in E_{i}^{1}$.

Our sequence will start with Q_{0} which is defined by setting $E_{0}^{0}=E_{0}^{1}=\emptyset$ and $\mathcal{F}_{0}=\mathcal{F}$. Note that $x \in Q_{0}$, so in particular, $Q_{0} \neq \emptyset$. We shall continue the process until we obtain a Q_{i} which contains an integral point. At each step Q_{i+1} will be obtained from Q_{i} by either adding a single new constraint of type 3 or 4 or by removing a single constraint of type 2 . To control this process, we shall only permit the removal of the constraint F from \mathcal{F}_{i} when the following condition is satisfied:

$$
\begin{equation*}
\left|F \backslash E_{i}^{0}\right| \leq q_{F}+d-1 \tag{1}
\end{equation*}
$$

Since the sets $E_{0}^{0}, E_{1}^{0}, \ldots$ form an increasing chain, and every point in $P(M)$ is ≤ 1, every point $z \in Q_{j}$ for $j>i$ will satisfy $z(F) \leq\left|F \backslash E_{i}^{0}\right| \leq q_{F}+d-1$ so no such point can violate the constraint F by more than $d-1$. Therefore, if we can continue this process until some Q_{i} contains an integral point, say $z \in \mathbb{Z}^{E}$, this vector will be the characteristic vector of a base B of M which satisfies $|B \cap F|=z(F) \leq q_{F}+d-1$ which is all that is required. Thus, to complete the proof, it suffices to prove that we can construct this sequence of polyhedra. So, we shall assume that Q_{i} is nonempty and does not contain an integral point, and show how to construct Q_{i+1}.

Let z be a vertex of the polyhedron Q_{i}. If $z(e)=0$ for some $e \notin E_{i}^{0}$ or $z(e)=1$ for some $e \notin E_{i}^{1}$ then we may obtain Q_{i+1} by adding this equation as a new constraint (this new polyhedron will still contain z so will be nonempty). Thus, we may assume that $E^{\prime}=E \backslash\left(E_{i}^{0} \cup E_{i}^{1}\right)$ satisfies $0<z(e)<1$ for every $e \in E^{\prime}$. Define the collection

$$
\mathcal{H}=\left\{H \in \mathcal{F}_{i} \mid z(H)=q_{H}\right\}
$$

Now, roughly speaking, our plan will be to use Proposition 3 to show that there are many tight constraints in \mathcal{H} and then to use the previous lemma to show that one of these constraints satisfies equation 1 . To do this, it will be helpful to consider the matroid $M^{\prime}=$ $M / E_{i}^{1} \backslash E_{i}^{0}$, together with the polyhedron Q_{i}^{\prime} given by the following system for $y^{\prime} \in \mathbb{R}^{E^{\prime}}$

1. $y^{\prime} \in P\left(M^{\prime}\right)$
2. $y^{\prime}\left(F \cap E^{\prime}\right) \leq q_{F}-\left|F \cap E_{i}^{1}\right|$ for every $F \in \mathcal{F}$

Now, $y^{\prime} \in P\left(M^{\prime}\right)$ if and only if the vector $y \in \mathbb{R}^{E}$ given by

$$
y(e)=\left\{\begin{array}{cc}
y^{\prime}(e) & e \in E^{\prime} \\
0 & e \in E_{i}^{0} \\
1 & e \in E_{i}^{1}
\end{array}\right.
$$

lies in $P(M)$. Geometrically, $P\left(M^{\prime}\right)$ is isomorphic to the face of $P(M)$ obtained by restricting to the affine space with value 0 on E_{i}^{0} and 1 on E_{i}^{1}. It follows from this that Q_{i}^{\prime} is isomorphic to a face of Q_{i}. Furthermore, setting $z^{\prime}=\left.z\right|_{E^{\prime}}$ we have that z^{\prime} is a vertex of Q_{i}^{\prime} and \mathcal{H} is precisely the set of constraints of type 2 which are tight for z^{\prime}. Therefore, by Proposition 3 we have:

$$
\begin{equation*}
\left|E^{\prime}\right| \leq \operatorname{rank}\left(\left\{\mathbb{1}_{S} \mid S \subseteq E^{\prime} \text { is tight for } z^{\prime}\right\} \cup\left\{\mathbb{1}_{H \cap E^{\prime}} \mid H \in \mathcal{H}\right\}\right) \tag{2}
\end{equation*}
$$

It follows from Lemma 4 that $\operatorname{rank}\left(\left\{\mathbb{1}_{S} \mid S \subseteq E^{\prime}\right.\right.$ is tight for $\left.\left.z^{\prime}\right\}\right) \leq r\left(M^{\prime}\right)$. Thus, setting $\mathcal{H}^{\prime}=\left\{H \cap E^{\prime} \mid H \in \mathcal{H}\right\}$, we have $\left|\mathcal{H}^{\prime}\right| \geq \operatorname{rank}\left(\left\{\mathbb{1}_{H \cap E^{\prime}} \mid H \in \mathcal{H}\right\}\right) \geq\left|E^{\prime}\right|-r\left(M^{\prime}\right)=r^{*}\left(M^{\prime}\right)$. Thus, the previous lemma applies (nontrivially) to the matroid M^{\prime}, the vector z^{\prime} and the collection \mathcal{H}^{\prime}. If there exists $H^{\prime} \in \mathcal{H}^{\prime}$ with $z^{\prime}\left(H^{\prime}\right) \geq\left|H^{\prime}\right|-d+1$ then choose $H \in \mathcal{H}$ with $H \cap E^{\prime}=H^{\prime}$ and observe that

$$
q_{H}=z(H)=\left|H \cap E_{i}^{1}\right|+z^{\prime}\left(H^{\prime}\right) \geq\left|H \cap E_{i}^{1}\right|+\left|H^{\prime}\right|-d+1=\left|H \backslash E_{i}^{0}\right|-d+1
$$

so we may safely obtain \mathcal{Q}_{i+1} by removing the constraint corresponding to H. Otherwise, it follows from the previous lemma that $\left|\mathcal{H}^{\prime}\right|=r^{*}\left(M^{\prime}\right)$ and every element in M^{\prime} is covered by exactly d members of \mathcal{H}^{\prime}. But then, summing all of the vectors $\mathbb{1}_{H \cap E^{\prime}}$ over all $H \in \mathcal{H}$ yields the vector $d \mathbb{1}_{E^{\prime}}$. Since E^{\prime} is tight relative to z^{\prime} this gives us

$$
\operatorname{rank}\left(\left\{\mathbb{1}_{S} \mid S \subseteq E^{\prime} \text { is tight for } z^{\prime}\right\} \cup\left\{\mathbb{1}_{H \cap E^{\prime}} \mid H \in \mathcal{H}\right\}\right) \leq r\left(M^{\prime}\right)+r^{*}\left(M^{\prime}\right)-1=\left|E^{\prime}\right|-1
$$

which contradicts Equation 2. This completes the proof.

