
Restricted Bases

Our goal is to give a proof of the following theorem which implies the existence of a basis of a

matroid satisfying certain added restrictions, under the assumption that a suitable fractional

basis (a term we define shortly) exists. The key idea in the proof is a pretty recursive process

due to Kamal Jain.

Theorem 1 (Király, Lau, Singh) Let M be a matroid on E, let x ∈ RE be a fractional

basis, and let F be a collection of subsets of E so that every e ∈ E is contained in at most

d members of F . Then there exists a basis B so that every F ∈ F satisfies

|B ∩ F | ≤ dx(F )e+ d− 1.

This theorem has numerous applications such as the following.

Corollary 2 Every r-regular r-edge-connected graph has a spanning tree of max degree ≤ 3.

Sketch of Proof: Let G = (V,E) be such a graph with |V | = n and define the vector x ∈ RE

by the rule that x(e) = 2(n−1)
nr

. It follows from the edge-connectivity of G that x is a fractional

spanning tree (i.e. a fractional basis for the cycle matroid). Furthermore, for every v ∈ V
the set δ(v) = {e ∈ E | e ∼ v} has the property that x(δ(v)) = 2(n−1)

n
≤ 2. So, setting

F = {δ(v) | v ∈ V } we may apply the theorem to the cycle matroid of G for the vector x,

the collection F and d = 2. The result is a spanning tree of G which has maximum degree

≤ 3 as desired. �

The proof of the theorem involves a polyhedral argument which relies on a basic (but

important!) fact about systems of linear equations which we give next. For any set of vectors

X in Euclidean space we let rank(X) denote the dimension of the subspace spanned by X.

Proposition 3 Let A be a real matrix indexed by S × T , let b ∈ RS, and let P be be the

polyhedron defined by the following system of linear equations for x ∈ RT

x ≥ 0

Ax ≤ b

Let y be a vertex of P . For every s ∈ S let As denote the row of A indexed by s, and call s

tight if Asy = bs. Then we have

|supp(y)| ≤ rank({As | s is tight }).
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Proof: Let A′ be the submatrix of A consisting of those rows As for which s is tight and

suppose (for a contradiction) that |supp(y)| > rank(A′). In this case, it follows from dimen-

sion considerations that there must exist a nonzero vector z ∈ RT in the nullspace of A′ for

which supp(z) ⊆ supp(y). Now consider the vector y′ = y + δz for δ ∈ R. For every tight

constraint s we have Asy
′ = As(y + δz) = Asy = bs so y′ will still satisfy all of the tight

constraints. It follows from this that there exists ε > 0 so that y′ ∈ P whenever |δ| < ε.

However, this contradicts the assumption that y is a vertex of P (as we have found a line

segment contained in P which has y in its interior). �

Basis Polytope: Let M be a matroid on E with rank function r. We define the basis

polytope of M , denoted P (M), to be the set of all x ∈ RE which satisfy the following system

of constraints.

1. x ≥ 0.

2. x(S) ≤ r(S) for every closed set S ⊆ E.

3. x(E) ≥ r(E).

Observe that the type 2 constraints imply that every x ∈ P (G) satisfies x ≤ 1. Furthermore,

the {0, 1} valued points in P (M) are precisely the characteristic vectors of bases, so we shall

call arbitrary elements of P (M) fractional bases. As usual, if x ∈ P (M) and x(S) = r(S)

for some closed set S we say that S is tight with respect to x. Our next lemma gives

an important dimension restriction on the family of tight sets. Here we let 1S denote the

characteristic vector of a subset S ⊆ E.

Lemma 4 Let M be a loopless nonempty matroid and let x ∈ P (M), then

rank({1R | R ⊆ E is tight}) ≤ r(M).

Proof: We proceed by induction on r(M). It is immediate from the definition that ∅ and E

are tight constraints. If there are no other tight constraints, then the equation follows from

r(M) > 0. Otherwise, let S ⊆ E be a minimal nonempty (closed) set which is tight. If T is

any other tight set then we have

r(S ∩ T ) + r(S ∪ T ) ≤ r(S) + r(T ) = x(S) + x(T ) = x(S ∩ T ) + x(S ∪ T )
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so it follows that both S ∩ T and S ∪ T are tight. Since S is minimal, it must be that every

tight set T satisfies either S ⊆ T or S ∩ T = ∅. Now, consider the matroid M ′ = M/S on

E ′ = E \ S and the vector x′ = x|E′ . For every T ⊆ E(M ′) we have

rM ′(T ) = rM(S ∪ T )− r(S) ≥ x(S ∪ T )− x(S) = x′(T )

with equality if and only if S ∪ T is tight in M . It follows from this that x′ ∈ P (M ′). Now,

choose a collection of tight sets T1, T2, . . . , Tk in M ′ relative to x′ so that {1T1 ,1T2 , . . .1Tk
}

is a basis of the space 〈{1T | T ⊆ E ′ is tight for x′ (in M ′)}〉. We claim that the set

{1S,1S∪T1 , . . . ,1S∪Tk
} is a basis for the space 〈{1R | R ⊆ E is tight for x (in M)}〉. To

see this, let R ⊆ E be tight with respect to x. Now R ∪ S is tight with respect to x so

R \ S is tight with respect to x′. Thus we may choose ai ∈ R so that 1R\S =
∑k

i=1 ai1Ti
.

Since R either contains S or is disjoint from S, it follows that there exists b ∈ R so that

1R = b1S +
∑k

i=1 ai1S∪Ti
thus proving the claim. Now the desired bound follows by induction

and the following inequality

rank({1R | R ⊆ E is tight}) ≤ k + 1 ≤ r(M ′) + 1 ≤ r(M). �

To help solidify our understanding, let’s combine our last two results. First let us note

that the following is an equivalent description of the linear system for P (M) (here x ∈ RE).

1. x ≥ 0.

2. 1>Sx ≤ r(S) for every closed set S ⊆ E.

3. −1>Ex ≤ −r(E).

We have the constraints 1>Ex ≤ r(E) and −1>Ex ≤ −r(E) which will both be tight. However,

in terms of the rank of the set of tight constraints, these two correspond to the same vector

1E. Therefore, by the previous lemma and Proposition 3, every vertex x ∈ P (M) satisfies

|supp(x)| ≤ r(M). Since x ≤ 1 we also have r(M) = x(E) ≤ |supp(x)|. This yields the

following theorem of Edmonds.

Theorem 5 (Edmonds) Every vertex of P (M) is the characteristic vector of a basis.

Returning to our central purpose, we shall require the following technical lemma before

we can prove the main theorem.
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Lemma 6 Let M be a matroid on E let x ∈ RE satisfy 0 < x(e) < 1 for every e ∈ E and

x(E) = r(M). Let F be a collection of subsets of E and assume the following conditions are

satisfied.

• Every F ∈ F satisfies x(F ) ∈ Z.

• Every e ∈ E is contained in at most d members of F .

• |F| ≥ r∗(M).

Then either there exists F ∈ F with x(F ) ≥ |F |−d+1 or the following holds: Every element

in E is covered exactly d times by members of F , every F ∈ F satisfies x(F ) = |F | − d, and

|F| = r∗(M).

Proof: For every e ∈ E let de be the number of sets in F which contain e. We may assume

that x(F ) < |F | − d + 1 for every F ∈ F (otherwise we are finished) and then by the

integrality of x(F ) we have x(F ) ≤ |F | − d for every F ∈ F . This yields∑
F∈F

x(F ) ≤
∑
F∈F

(|F | − d) =
∑
F∈F

|F | − d|F| ≤
∑
F∈F

|F | − d · r∗(M)

and rearranging gives the first inequality in the following chain.

d · r∗(M) ≤
∑
F∈F

(|F | − x(F )) =
∑
e∈E

de (1− x(e)) ≤ d
∑
e∈E

(1− x(e)) = d · r∗(M).

Thus all inequalities in the above equations are tight, so de = d for every e ∈ E from the

second equation, and x(F ) = |F |−d for every F ∈ F and |F| = r∗(M) from the first. �

Proof of Theorem 1: For every F ∈ F let qF = dx(F )e. Our proof will proceed by con-

structing a sequence of nonempty polyhedra Q0, Q1, . . . where Qi is defined by the following

system using sets E0
i , E

1
i ⊆ E and Fi ⊆ F .

1. y ∈ P (M).

2. y(F ) ≤ qF for every F ∈ Fi.

3. y(e) = 0 for every e ∈ E0
i .

4. y(e) = 1 for every e ∈ E1
i .
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Our sequence will start with Q0 which is defined by setting E0
0 = E1

0 = ∅ and F0 = F .

Note that x ∈ Q0, so in particular, Q0 6= ∅. We shall continue the process until we obtain a

Qi which contains an integral point. At each step Qi+1 will be obtained from Qi by either

adding a single new constraint of type 3 or 4 or by removing a single constraint of type 2.

To control this process, we shall only permit the removal of the constraint F from Fi when

the following condition is satisfied:

|F \ E0
i | ≤ qF + d− 1 (1)

Since the sets E0
0 , E

0
1 , . . . form an increasing chain, and every point in P (M) is ≤ 1, every

point z ∈ Qj for j > i will satisfy z(F ) ≤ |F \E0
i | ≤ qF + d− 1 so no such point can violate

the constraint F by more than d− 1. Therefore, if we can continue this process until some

Qi contains an integral point, say z ∈ ZE, this vector will be the characteristic vector of a

base B of M which satisfies |B ∩F | = z(F ) ≤ qF + d− 1 which is all that is required. Thus,

to complete the proof, it suffices to prove that we can construct this sequence of polyhedra.

So, we shall assume that Qi is nonempty and does not contain an integral point, and show

how to construct Qi+1.

Let z be a vertex of the polyhedron Qi. If z(e) = 0 for some e 6∈ E0
i or z(e) = 1

for some e 6∈ E1
i then we may obtain Qi+1 by adding this equation as a new constraint

(this new polyhedron will still contain z so will be nonempty). Thus, we may assume that

E ′ = E \ (E0
i ∪ E1

i ) satisfies 0 < z(e) < 1 for every e ∈ E ′. Define the collection

H = {H ∈ Fi | z(H) = qH}.

Now, roughly speaking, our plan will be to use Proposition 3 to show that there are

many tight constraints in H and then to use the previous lemma to show that one of these

constraints satisfies equation 1. To do this, it will be helpful to consider the matroid M ′ =

M/E1
i \ E0

i , together with the polyhedron Q′i given by the following system for y′ ∈ RE′

1. y′ ∈ P (M ′)

2. y′(F ∩ E ′) ≤ qF − |F ∩ E1
i | for every F ∈ F

Now, y′ ∈ P (M ′) if and only if the vector y ∈ RE given by

y(e) =


y′(e) e ∈ E ′

0 e ∈ E0
i

1 e ∈ E1
i
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lies in P (M). Geometrically, P (M ′) is isomorphic to the face of P (M) obtained by restricting

to the affine space with value 0 on E0
i and 1 on E1

i . It follows from this that Q′i is isomorphic

to a face of Qi. Furthermore, setting z′ = z|E′ we have that z′ is a vertex of Q′i and H is

precisely the set of constraints of type 2 which are tight for z′. Therefore, by Proposition 3

we have:

|E ′| ≤ rank ({1S | S ⊆ E ′ is tight for z′} ∪ {1H∩E′ | H ∈ H}) (2)

It follows from Lemma 4 that rank ({1S | S ⊆ E ′ is tight for z′}) ≤ r(M ′). Thus, setting

H′ = {H ∩ E ′ | H ∈ H}, we have |H′| ≥ rank({1H∩E′ | H ∈ H}) ≥ |E ′| − r(M ′) = r∗(M ′).

Thus, the previous lemma applies (nontrivially) to the matroid M ′, the vector z′ and the

collection H′. If there exists H ′ ∈ H′ with z′(H ′) ≥ |H ′| − d + 1 then choose H ∈ H with

H ∩ E ′ = H ′ and observe that

qH = z(H) = |H ∩ E1
i |+ z′(H ′) ≥ |H ∩ E1

i |+ |H ′| − d+ 1 = |H \ E0
i | − d+ 1

so we may safely obtain Qi+1 by removing the constraint corresponding to H. Otherwise, it

follows from the previous lemma that |H′| = r∗(M ′) and every element in M ′ is covered by

exactly d members of H′. But then, summing all of the vectors 1H∩E′ over all H ∈ H yields

the vector d1E′ . Since E ′ is tight relative to z′ this gives us

rank ({1S | S ⊆ E ′ is tight for z′} ∪ {1H∩E′ | H ∈ H}) ≤ r(M ′) + r∗(M ′)− 1 = |E ′| − 1

which contradicts Equation 2. This completes the proof. �


