Hoffman's Bound for Vector Colouring

The goal of this note is to prove the following theorem of Bilu which gives a spectral lower bound on the vector chromatic number (which we denote by χ_{v}). This improves upon a classic bound of Hoffman which has the same statement except with χ in place of χ_{v}.

Theorem 1 (Bilu) Let $G=(V, E)$ be a graph with $V=\{1,2, \ldots, n\}$, let $W \neq 0$ be a nonnegative symmetric $n \times n$ matrix with $W_{i, j}=0$ whenever $i j \notin E$, and let $\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{n}$ be the eigenvalues of W. Then

$$
\chi_{v}(G) \geq 1-\frac{\lambda_{n}}{\lambda_{1}}
$$

We begin with a little notation followed by a lemma. Throughout we treat elements of \mathbb{R}^{n} as column vectors. We write $B \succeq 0$ if B is a positive semidefinite matrix, and if A, B are $n \times n$ matrices, their dot product is $A \cdot B=\operatorname{tr}\left(A B^{\top}\right)$.

Lemma 2 Let A be a real symmetric matrix and let λ_{n} be its smallest eigenvalue. Then

$$
\lambda_{n}=\min _{v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}\left(v_{i}^{\top} v_{j}\right)}{\sum_{i=1}^{n}\left\|v_{i}\right\|_{2}^{2}} .
$$

Proof: It follows from the Rayleigh-Ritz characterization that

$$
\lambda_{n}=\min _{x \in \mathbb{R}^{n}:\|x\|^{2}=1} x^{\top} A x=\min _{x \in \mathbb{R}^{n}: \operatorname{tr}\left(x x^{\top}\right)=1} A \cdot x x^{\top} .
$$

Now, matrices of the form $x x^{\top}$ are precisely the positive semidefinite matrices of rank 1. Thus, λ_{n} is also equal to the minimum of $A \cdot B$ where B ranges over all positive semidefinite matrices of rank 1 and trace 1 . However, every positive semidefinite matrix is a nonnegative combination of rank 1 positive semidefinite matrices, so this rank restriction is superfluous. Thus,

$$
\begin{equation*}
\lambda_{n}=\min _{B \succeq 0: t r(B)=1} A \cdot B . \tag{1}
\end{equation*}
$$

Every positive semidefinite matrix B is the Gram matrix of a collection of vectors, so we may choose $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ so that $B_{i, j}=v_{i}^{\top} v_{j}$. Now $\operatorname{tr}(B)=1$ is equivalent to $\sum_{i=1}^{n}\left\|v_{i}\right\|_{2}^{2}=1$ and the result follows immediately from this observation and (1).

Proof of Theorem 1: Let $t=\chi_{v}(G)$ and choose unit vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{n}$ so that $u_{i}^{\top} u_{j} \leq$ $-\frac{1}{t-1}$ whenever $i j \in E$. Next, choose an eigenvector $\alpha \in \mathbb{R}^{n}$ of W with eigenvalue λ_{1} and note that $\alpha \geq 0$ (by Perron-Frobenius). Finally, for $1 \leq i \leq n$ set $v_{i}=\alpha_{i} u_{i}$. Since $W_{i, j}=0$ whenever $u_{i}^{\top} u_{j}>-\frac{1}{t-1}$, the lemma gives us

$$
\begin{aligned}
\lambda_{n} & \leq \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} W_{i, j}\left(v_{i}^{\top} v_{j}\right)}{\sum_{i=1}^{n}\left\|v_{i}\right\|_{2}^{2}} \\
& \leq-\frac{1}{t-1} \cdot \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} W_{i, j} \alpha_{i} \alpha_{j}}{\sum_{i=1}^{n} \alpha_{i}^{2}} \\
& =-\frac{1}{t-1} \frac{\alpha^{\top} W \alpha}{\|\alpha\|^{2}} \\
& =-\frac{\lambda_{1}}{t-1} .
\end{aligned}
$$

Thus $\chi_{v}(G)=t \geq 1-\frac{\lambda_{1}}{\lambda_{n}}$ as claimed.

