Pretty Theorems on Vertex Transitive Graphs

Growth

For a graph G a vertex x and a nonnegative integer n we let $B(x, n)$ denote the ball of radius n around x (i.e. the set $\{u \in V(G): \operatorname{dist}(u, v) \leq n\}$. If G is a vertex transitive graph then $|B(x, n)|=|B(y, n)|$ for any two vertices x, y and we denote this number by $f(n)$.

Example: If $G=\operatorname{Cayley}\left(\mathbb{Z}^{2},\{(0, \pm 1),(\pm 1,0)\}\right)$ then $f(n)=(n+1)^{2}+n^{2}$.

Our first result shows a property of the function f which is a relative of \log concavity.

Theorem 1 (Gromov) If G is vertex transitive then $f(n) f(5 n) \leq f(4 n)^{2}$

Proof: Choose a maximal set Y of vertices in $B(u, 3 n)$ which are pairwise distance $\geq 2 n+1$ and set $y=|Y|$. The balls of radius n around these points are disjoint and are contained in $B(u, 4 n)$ which gives us $y f(n) \leq f(4 n)$. On the other hand, the balls of radius $2 n$ around the points in Y cover $B(u, 3 n)$, so the balls of radius $4 n$ around these points cover $B(u, 5 n)$, giving us $y f(4 n) \geq f(5 n)$. Combining our two inequalities yields the desired bound.

Isoperimetric Properties

Here is a classical problem: Given a small loop of string in the plane, arrange it to maximize the enclosed area. Perhaps not surprisingly, the best you can do is to arrange your string as a circle. So, the real problem amounts to proving that any region in the plane with area greater than that of a circle also has a larger boundary. Such inequalities (relating area to boundary) are called isoperimetric inequalities, and are of great interest in a variety of contexts, in particular for vertex transitive graphs.

The diameter of a subset of vertices X, denoted $\operatorname{diam}(X)$ is the maximum distance between a pair of points in X. For a set X of vertices we let $\partial(X)=\{v \in V(G) \backslash X$: v is adjacent to a point in $X\}$.

Example: We again consider the Cayley graph on \mathbb{Z}^{2} from the previous subsection. If we take $X=B(0, n)$ then $|X|=(n+1)^{2}+n^{2}$ and $|\partial(X)|=|B(0, n+1) \backslash B(0, n)|=$ $(n+2)^{2}-n^{2}=2 n+4$, so just as in the plane, the size of the boundary is proportional to n while the size of the set (i.e. area) is proportional to n^{2}.

Theorem 2 (Babai Szegedy) If G is vertex transitive and $X \subseteq V(G)$ with $\operatorname{diam}(X)<$ $\operatorname{diam}(G)$ then

$$
\frac{|\partial(X)|}{|X|} \geq \frac{1}{\operatorname{diam}(X)+1}
$$

Proof: Let N denote the number of geodesic paths of length $d=\operatorname{diam}(X)+1$ which pass through an arbitrary vertex of G (since G is vertex transitive this number is the same for any two vertices). Let \mathcal{P} denote the set of geodesic paths of length d which intersect the set X. The key observation for this proof is just that every $P \in \mathcal{P}$ meets the set $\partial(X)$. It follows instantly from this that

$$
|\mathcal{P}| \leq N|\partial(X)| .
$$

On the other hand, we have

$$
N|X|=\sum_{P \in \mathcal{P}}|V(P) \cap X| \leq d|\mathcal{P}|
$$

(here there is a small subtlety that every path in \mathcal{P} has $d+1$ points, at most d of which are in X). Combining our two inequalities yields the result.

Long Cycles

There are only 4 connected vertex transitive graphs with ≥ 3 vertices known not to have a Hamiltonian cycle: Petersen's Graph, Coxeter's Graph, and the graphs obtained form these by truncation (blowing up each vertex to a triangle). In particular, this leaves open the following famous question.

Problem 3 Does every connected vertex transitive graph have a Hamiltonian path?

Our next theorem shows that vertex transitive graphs must have long cycles (although what we can show is still well short of Hamiltonicity). But first we need a little notation and a couple simple facts. If the group Γ acts transitively on the set X and $x \in X$ we let $\Gamma_{x}=\{g \in \Gamma: g(x)=x\}$ and we call this the stabilizer of x. The orbit stabilizer theorem tells us that $|\Gamma|=|X| \cdot\left|\Gamma_{x}\right|$.

Lemma 4 Let Γ act transitively on the set X and let $S \subseteq X$. If $|S \cap g(S)| \geq c$ for every $g \in \Gamma$ then $|S| \geq \sqrt{c|X|}$.

Proof: Let N be the number of pairs (g, x) so that $g \in \Gamma, x \in X$ and $x \in S \cap g(S)$. For every $x \in S$ we have that (x, g) will contribute to N if and only if $g^{-1}(x) \in S$. Since there are exactly $\left|\Gamma_{x}\right|$ ways to map g to a given point, it follows that there are exactly $|S| \cdot\left|\Gamma_{x}\right|$ terms containing x which contribute to N. This gives us

$$
|S|^{2} \cdot\left|\Gamma_{x}\right|=N
$$

On the other hand, by assumption, for every group element g we have that there exist at least c points x so that (x, g) contributes to N. This gives us

$$
N \geq c|\Gamma|
$$

Combining our inequalities gives us $|S|^{2} \cdot\left|\Gamma_{x}\right| \leq c|\Gamma|$ and then dividing through by $\left|\Gamma_{x}\right|$ (and applying the Orbit Stabilizer Theorem yields $|S|^{2} \leq c|X|$ as desired.

Theorem 5 (Babai) If $G=(V, E)$ is a connected vertex transitive graph with $n=|V|$ then G has a cycle of length $\geq \sqrt{3 n}$

Proof: Every finite connected vertex transitive graph is 2-connected, and must be 3-connected if it is not a cycle (a fact we leave without proof here). Thus, we may assume that G is 3 -connected. Now, choose a longest cycle C of G and consider the set $S=V(C) \subseteq V$. It follows from the 3-connectivity of G that $|S \cap g(S)| \geq 3$ for every automorphism g. So, the previous lemma gives us $|S| \geq \sqrt{3 n}$ as desired.

