
Pretty Theorems on Vertex Transitive Graphs

Growth

For a graph G a vertex x and a nonnegative integer n we let B(x, n) denote the ball of radius

n around x (i.e. the set {u ∈ V (G) : dist(u, v) ≤ n}. If G is a vertex transitive graph then

|B(x, n)| = |B(y, n)| for any two vertices x, y and we denote this number by f(n).

Example: If G = Cayley(Z2, {(0,±1), (±1, 0)}) then f(n) = (n + 1)2 + n2.

0

f (3) = |B(0, 3)| = (1 + 3 + 5 + 7) + (5 + 3 + 1) = 42 + 32

Our first result shows a property of the function f which is a relative of log concavity.

Theorem 1 (Gromov) If G is vertex transitive then f(n)f(5n) ≤ f(4n)2

Proof: Choose a maximal set Y of vertices in B(u, 3n) which are pairwise distance ≥ 2n + 1

and set y = |Y |. The balls of radius n around these points are disjoint and are contained in

B(u, 4n) which gives us yf(n) ≤ f(4n). On the other hand, the balls of radius 2n around

the points in Y cover B(u, 3n), so the balls of radius 4n around these points cover B(u, 5n),

giving us yf(4n) ≥ f(5n). Combining our two inequalities yields the desired bound. �

Isoperimetric Properties

Here is a classical problem: Given a small loop of string in the plane, arrange it to maximize

the enclosed area. Perhaps not surprisingly, the best you can do is to arrange your string

as a circle. So, the real problem amounts to proving that any region in the plane with area

greater than that of a circle also has a larger boundary. Such inequalities (relating area

to boundary) are called isoperimetric inequalities, and are of great interest in a variety of

contexts, in particular for vertex transitive graphs.
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The diameter of a subset of vertices X, denoted diam(X) is the maximum distance

between a pair of points in X. For a set X of vertices we let ∂(X) = {v ∈ V (G) \ X :

v is adjacent to a point in X}.

Example: We again consider the Cayley graph on Z2 from the previous subsection. If

we take X = B(0, n) then |X| = (n + 1)2 + n2 and |∂(X)| = |B(0, n + 1) \ B(0, n)| =

(n + 2)2 − n2 = 2n + 4, so just as in the plane, the size of the boundary is proportional to n

while the size of the set (i.e. area) is proportional to n2.

Theorem 2 (Babai Szegedy) If G is vertex transitive and X ⊆ V (G) with diam(X) <

diam(G) then
|∂(X)|
|X| ≥

1

diam(X) + 1

Proof: Let N denote the number of geodesic paths of length d = d iam(X) + 1 which pass

through an arbitrary vertex of G (since G is vertex transitive this number is the same for

any two vertices). Let P denote the set of geodesic paths of length d which intersect the

set X. The key observation for this proof is just that every P ∈ P meets the set ∂(X). It

follows instantly from this that

|P| ≤ N |∂(X)|.

On the other hand, we have

N |X| =
∑
P∈P

|V (P ) ∩X| ≤ d|P|

(here there is a small subtlety that every path in P has d + 1 points, at most d of which are

in X). Combining our two inequalities yields the result. �

Long Cycles

There are only 4 connected vertex transitive graphs with ≥ 3 vertices known not to have a

Hamiltonian cycle: Petersen’s Graph, Coxeter’s Graph, and the graphs obtained form these

by truncation (blowing up each vertex to a triangle). In particular, this leaves open the

following famous question.
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Problem 3 Does every connected vertex transitive graph have a Hamiltonian path?

Our next theorem shows that vertex transitive graphs must have long cycles (although

what we can show is still well short of Hamiltonicity). But first we need a little notation

and a couple simple facts. If the group Γ acts transitively on the set X and x ∈ X we let

Γx = {g ∈ Γ : g(x) = x} and we call this the stabilizer of x. The orbit stabilizer theorem

tells us that |Γ| = |X| · |Γx|.

Lemma 4 Let Γ act transitively on the set X and let S ⊆ X. If |S ∩ g(S)| ≥ c for every

g ∈ Γ then |S| ≥
√

c|X|.

Proof: Let N be the number of pairs (g, x) so that g ∈ Γ, x ∈ X and x ∈ S ∩ g(S). For

every x ∈ S we have that (x, g) will contribute to N if and only if g−1(x) ∈ S. Since there

are exactly |Γx| ways to map g to a given point, it follows that there are exactly |S| · |Γx|
terms containing x which contribute to N . This gives us

|S|2 · |Γx| = N

On the other hand, by assumption, for every group element g we have that there exist at

least c points x so that (x, g) contributes to N . This gives us

N ≥ c|Γ|

Combining our inequalities gives us |S|2 · |Γx| ≤ c|Γ| and then dividing through by |Γx| (and

applying the Orbit Stabilizer Theorem yields |S|2 ≤ c|X| as desired. �

Theorem 5 (Babai) If G = (V, E) is a connected vertex transitive graph with n = |V | then
G has a cycle of length ≥

√
3n

Proof: Every finite connected vertex transitive graph is 2-connected, and must be 3-connected

if it is not a cycle (a fact we leave without proof here). Thus, we may assume that G is

3-connected. Now, choose a longest cycle C of G and consider the set S = V (C) ⊆ V . It

follows from the 3-connectivity of G that |S ∩ g(S)| ≥ 3 for every automorphism g. So, the

previous lemma gives us |S| ≥
√

3n as desired. �


