
1 Packing and Covering

Clutters

Hypergraph: A hypergraph H consists of a finite set of vertices, denoted V (H), a finite set

of edges, denoted E(H), and an incidence relation on V (H) × E(H). We associate an edge

e ∈ E(H) with the set of vertices it is incident with, so for instance, we write e = {a, b, c} if

e is incident with precisely the vertices a, b, c.

Matching: A matching in H is a collection of edges so that no vertex is incident with more

than one. Informally, packing is the problem of finding the largest matching.

Cover: A cover in H is a collection of edges so that every vertex is incident with at least

one. Informally, covering is the problem of finding the smallest cover.

Maximal & Minimal: We will frequently consider subsets of a set X with a certain

property ?. We say that A ⊆ X is minimal (maximal) with property ? if A has property ?

but no proper subset (superset) of A does.

Clutter: A clutter C is a hypergraph with the property that whenever e, f are distinct

edges e 6⊆ f . Note that if H is a hypergraph, then the minimal nonempty edges of H form

a clutter C1 and the maximal edges of H form a clutter C2. Furthermore, packing problems

in H reduce to packing problems in C1 while covering problems in H reduce to covering

problems in C2.

Incidence Matrix: The incidence matrix or clutter matrix of C, denoted M(C), is the

matrix indexed by E(C) × V (C) with a 1 in position e, v if e and v are incident and a 0

otherwise.

Packing

Packing: We let ν(C) denote the size of the largest matching in C.

Transversal: A transversal of C is a subset X ⊆ V (C) with the property that X ∩ e 6= ∅
for every e ∈ E(C). We let τ(C) denote the size of the smallest transversal in C
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Observation 1.1 ν(C) ≤ τ(C).

Pack: We say that C packs if ν(C) = τ(C).

Blocker: The blocker of C, denoted b(C), is a clutter with vertex set V (C), where e is an

edge of b(C) if e is a minimal transversal of C.

Proposition 1.2 b(b(C)) = C for every clutter C.

Proof: Let V = V (C). We first prove two easy properties:

(1) Every e ∈ E(C) contains an edge of b(b(C)).

By definition, every edge in b(C) intersects e, so e is a transversal of b(C). It therefore

contains a minimal transversal of b(C), or equivalently, an edge of b(b(C)).

(2) Every f ∈ E(b(b(C))) contains an edge of C.

Suppose (for a contradiction) that (2) is false. Then the set V \ f must intersect every

edge in E(C), so V \f is a transversal of C. Thus V \f contains a minimal transversal g of C
which is, by definition, an edge of b(C). However, this is a contradiction, as f is a transversal

of b(C), but f ∩ g = ∅.

To finish the proof, let e be an edge of C. Then by (1), e must contain an edge f of

b(b(C)), and by (2), f must contain an edge e′ of C. But then we have e′ ⊆ f ⊆ e and it

then follows from the definition of clutter that e = f = e′. Since e = f , we have now shown

that e is also an edge of b(b(C)). By a similar argument we find that every edge of b(b(C)) is

also an edge of C, so C = b(b(C)) as desired. �

Examples. Fix a simple connected graph G and consider the following clutters.

(i) C1 = G (so V (C1) = V (G), E(C1) = E(G) and we have the same incidence relation as

in G). Then (check!) the edges of b(C1) are the minimal vertex covers of G. Note that

a theorem of König shows that C1 packs whenever G is bipartite.

(ii) C2 has vertex set E(G), and E(C2) = {E(T ) : T is a spanning tree of G}. Then

(check!) the edges of b(C2) are precisely the minimal edge cuts of G.

(iii) C3 has vertex set E(G), and E(C3) = {E(C) : C is a cycle of G}. Then (check!) the

edges of b(C3) are precisely the complements of spanning trees of G.
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(iv) Fix s, t ∈ V (G) and let C4 be the clutter with V (C4) = E(G) and E(C4) = {E(P ) :

P is an st-path}. Then (check!) the edges of b(C4) are precisely the minimal st edge

cuts of G. Note that Menger’s theorem on edge-connectivity shows that C4 packs.

Weightings: Let V = V (C) and let Z+ denote the set of nonnegative integers. We will call

an element w ∈ ZV
+ a weighting and view it both as a function and as a vector. If S ⊆ V

we let w(S) =
∑

v∈S w(v). We define the weighted packing parameters τw and νw as follows

(were the clutter not clear from context we would write τw(C) and νw(C).

τw = min{w(e) : e ∈ E(b(C))}

νw = max{|F| : F a multiset of edges of C s.t. every v ∈ V is used ≤ w(v) times}

Observation 1.3 νw(C) ≤ τw(C).

MFMC: We say that C has the MFMC property (MFMC is an abbreviation for Max-Flow

Min-Cut) or just that C is MFMC if τw = νw for every w ∈ ZV
+.

Theorem 1.4 (Ford-Fulkerson) Let D be a digraph with vertices s, t and let C be the

clutter with vertex set E(D) whose edges are the collection of all directed st-paths in D.

Then C has the MFMC property.

Covering

Note: If C is a clutter which has a vertex not incident with any edge, then it has no cover.

To avoid this annoyance, we shall henceforth assume that our clutters do not have such

vertices.

Covering: We let κ(C) denote the size of the smallest cover in C.

Independent Sets: A subset X ⊆ V (C) is independent if |X ∩ e| ≤ 1 for every edge

e ∈ E(C). The size of the largest independent set is denoted α(C).

Observation 1.5 κ(C) ≥ α(C) for every clutter C.
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Covers: We say that the clutter C covers if κ(C) = α(C).

Antiblocker: The antiblocker of C, denoted a(C), is a clutter with vertex set V (C), where

e is an edge of a(C) if e is a maximal independent set.

Helly Property: If x, y ∈ V (C) write x ∼ y if there exists e ∈ E(C) with x, y ∈ e. We say

that C has the Helly Property if every subset X ⊆ V (C) for which x ∼ y for all x, y ∈ X has

the property that there is an edge containing X.

Clique-Node & Independence-Node Clutters: The clique-node (independence-node)

clutter of a graph G is the clutter CN(G) (IN(G)) with vertex set V (G) and with an edge

e whenever e ⊆ V (G) is a maximal clique (independent set) of G.

Observation 1.6

(i) IN(G) = CN(Ḡ)

(ii) IN(G) and CN(G) are antiblockers of one another.

(iii) IN(G) covers if and only if ω(G) = χ(G).

Proposition 1.7 Let C be a clutter. Then the following are equivalent.

(i) a(a(C)) = C

(ii) C has the Helly Property.

(iii) C = CN(G) for some graph G.

Proof: Homework.

Weighting: For w ∈ ZV
+ we define κw and αw as follows (as usual, we write κw(C) and

αw(C) if the clutter is not clear from context):

αw = max{w(e) : e ∈ E(a(C))}

κw = min{|(F| : F a multiset of edges of C s.t. every v ∈ V is used ≥ w(v) times}

Observation 1.8 κw(C) ≥ αw(C).

Perfect+: We say that C is Perfect+ if αw(C) = κw(C) for every w ∈ ZV
+.


