
2 Polyhedra

Preliminaries

By default, we treat elements of Rm as column vectors and if x, y ∈ Rm we let x · y = x>y.

Polyhedron: A polyhedron P ⊆ Rn is any set of the form {x ∈ Rn : Ax ≤ b} where A is an

m× n matrix and b ∈ Rm. If c ∈ Rn and x · c ≥ t for every x ∈ P then {x ∈ P : x · c = t} is

a face of P . A vertex of P is a face which consists of a single point.

Observation 2.1 If x is a vertex of the polyhedron P , then there exists w ∈ Zn and λ ∈ R
so that {x} = {y ∈ P : y>w ≥ λ}.

Proof: Choose a vector u and a number µ so that {x} = {y ∈ P : y>u ≥ µ}. It follows

from the density of the rationals that we may assume u is rational. Let N be the least

common multiple of the denominators which appear in the entries of the vector u. Now

setting w = Nu and λ = Nµ we have that {x} = {y ∈ P : y>w ≥ λ} as required. �

Pointed: We say that P is pointed if every minimal face is a vertex. Note that if P ⊆ Rm
+

then P must be pointed.

Integral: A point x ∈ Rm is integral if every coordinate is an integer. A polyhedron P ⊆ Rm

is integral if every minimal face contains an integral point. Note that a pointed polyhedron

is integral if and only if every vertex is integral.

Convex Hull: The convex hull of a set X ⊆ Rm is the unique minimal convex set which

includes X. Note that the convex hull of the rows of A is precisely

{y>A : y ∈ Rm
+ and y · 1 = 1}.

Up & Down-Monotone: We say that a set X ⊆ Rm is up-monotone if whenever x ∈ X
and y ≥ x we have y ∈ X. Similarly, we say that X is down monotone in Rm

+ if whenever

x ∈ X and 0 ≤ y ≤ x we have y ∈ X.

Up & Down-Hull: If X ⊆ Rm
+ the up-hull of X is the unique minimal up-monotone

set which includes X. Similarly, the down-hull of X in Rm
+ is the unique minimal down-

monotone set in Rm
+ which includes X.



2

Essential Vertex: If P ⊆ Rm
+ is down monotone in Rm

+ then a vertex x of P is essential if

x is not contained in the down-hull of P \ x.

Observation 2.2 Let P ⊆ Rm
+ be a polyhedron. Then

(i) If P is bounded, then P is the convex hull of its vertices.

(ii) If P is up-monotone, then P is the up-hull of its vertices.

(iii) If P is down-monotone in Rm
+ , then P is the down-hull of its essential vertices.

Up & Down: Let C be a clutter and let M = M(C). We define the polyhedra Up(C) to be

the up-hull of the incidence vectors of the edges of C and Down(C) to be the down-hull of

the incidence vectors of the edges of C in RV
+. Thus, we have:

Up(C) = {x ∈ Rm
+ : x> ≥ y>A for some y ∈ Rm

+ with y · 1 = 1}

Down(C) = {x ∈ Rm
+ : x> ≤ y>A for some y ∈ Rm

+ with y · 1 = 1}

Proposition 2.3 Let C = (V,E) be a clutter and let X ⊆ RV
+ be the set of incidence vectors

of its edges. Then X is the set of vertices of Up(C) and the set of essential vertices of

Down(C).

Proof: Homework.

The Packing Polyhedron and Ideal Clutters

Blocking Polyhedra: If P ⊆ RS
+ is an up-monotone polyhedron, its blocker is

b(P ) = {y ∈ RS
+ : x>y ≥ 1 for every x ∈ P}

Lemma 2.4 Let P ⊆ RS
+ be an up-monotone polyhedron.

(i) if z 6∈ P there exist y ∈ RS
+ and λ ∈ R+ s.t. y>z < λ and y>x ≥ λ for every x ∈ P .

(ii) if x ∈ P is a vertex, there exist y ∈ RS
+ and λ ∈ R+ s.t. {x} = {z ∈ P : y>z ≤ λ}.
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Proof: (i): Since P is closed and convex and z 6∈ P , we may choose a hyperplane H which

separates z and P . Choose a normal vector y for H and suppose (for a contradiction) that

there are indices i, j with yi > 0 and yj < 0. Choose a point x ∈ P and suppose that y>x = t.

If we start at x and then increase the coordinate xi (xj) we stay in P , and it follows that

there are points in P whose dot product with y is equal to t′ for any t′ ≥ t (t′ ≤ t). But this

contradicts the assumption that H is disjoint from P . So, by possibly replacing y by −y we

may assume that y ≥ 0. Choose λ 6= 0 so that H = {x ∈ RS
+ : x>y = λ. It now follows from

the fact that y, z, P all lie in the nonnegative orthant that λ > 0. This completes the proof.

The proof of (ii) is similar except that H is chosen to be a hyperplane which intersects P

only at x. �

Proposition 2.5 b(b(P )) = P for every up-monotone polyhedron P ⊆ RS
+.

Proof: Every x ∈ P satisfies x ≥ 0 and x>y ≥ 1 for every y ∈ b(P ) by definition. It follows

from this that x ∈ b(b(P )), so P ⊆ b(b(P )).

Suppose (for a contradiction) that b(b(P )) 6⊆ P , and choose z ∈ b(b(P )) \ P . Apply the

lemma to choose a vector y ∈ RS
+ and λ ∈ R+. Now, replacing y by the vector 1

λ
y gives us

y>z < 1 and y>x ≥ 1 for all x ∈ P . It follows from the latter that y ∈ b(P ), but then the

former condition contradicts z ∈ b(b(P )). �

Let C be a clutter with V = V (C), set A = M(C) and B = M(b(C)).

Fractional Transversal: A fractional transversal of C is a vector x ∈ RV
+ with the property

that Ax ≥ 1. So, in other words, a fractional transversal is a weighting of the vertices with

the property that every edge gets a total weight of ≥ 1. Note that a 0, 1 vector is a fractional

transversal if and only if it is the incidence vector of a transversal.

Packing Polyhedron: We define the packing polyhedron as follows:

Pack(C) = {x ∈ RV
+ : Ax ≥ 1}

So, in words, the packing polyhedron is the set of all fractional transversals.

Ideal: The clutter C is ideal if Pack(C) is integral.

Observation 2.6



4

(i) Up(b(C)) ⊆ Pack(C)

(ii) Up(b(C)) = Pack(C) if and only if C is ideal.

Proof: Part (i) follows immediately from the observation that each incidence vector of an

edge in b(C) is contained in Pack(C). Part (ii) follows from the observation that every

integral point in Pack(C) is also contained in Up(b(C)). �

Observation 2.7 b(Up(C)) = Pack(C)

Proof:

b(Up(C)) = {y ∈ RV
+ : y>x ≥ 1 for every x ∈ Up(C) }

= {y ∈ RV
+ : y>x ≥ 1 whenever x is the incidence vector of an edge of C }

= Pack(C) �

For the remaining two results in this section, let us name the following polyhedra:

P = Pack(C)

Q = Pack(b(C))

PI = Up(b(C))

QI = Up(C)

So, by the previous observation b(P ) = QI and b(Q) = PI . Observation 2.6 shows that

PI ⊆ P and QI ⊆ Q and further that C is ideal if and only if P = PI and b(C) is idea if and

only if Q = QI .

Theorem 2.8 (Lehman) C is ideal if and only if b(C) is ideal.

Proof:

C is ideal⇔ P = PI

⇔ b(P ) = b(PI)

⇔ QI = Q

⇔ b(C) is ideal.

�
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Theorem 2.9 (Lehman’s width-length inequality) The following are equivalent

(i) C and b(C) are ideal.

(ii)
(
mine∈E(C)w(e)

) (
minf∈E(b(C)) `(f)

)
≤ w>` for every w, ` ∈ RV

+.

(here we let x(S) =
∑

s∈S x(s) whenever x ∈ RV and S ⊆ V ).

Proof: The result is trivial whenever mine∈E(C)w(e) = 0 or minf∈E(b(C)) `(f) = 0. Further-

more, it is invariant under scaling w or ` by a positive constant, so we may assume that

mine∈E(C)w(e) = 1 = minf∈E(b(C)) `(f). We now have the following (the first identity is a

consequence of these assumptions).

(ii)⇔ w>` ≥ 1 whenever w ∈ P and ` ∈ Q

⇔ P ⊆ b(Q) and Q ⊆ b(P )

⇔ P ⊆ PI and Q ⊆ QI

⇔ P = PI and Q = QI

⇔ C and b(C) are ideal

⇔ (i) �

The Covering Polyhedron and Perfect Clutters

Antiblocker: If P ⊆ RS
+ is a down-monotone polyhedron, its antiblocker is

a(P ) = {y ∈ RS
+ : x>y ≤ 1 for every x ∈ P}

Lemma 2.10 Let P ⊆ RS
+ be a down-monotone polyhedron.

(i) if z 6∈ P there exist y ∈ RS
+ and λ ∈ R+ s.t. y>z > λ and y>x ≤ λ for every x ∈ P .

(ii) if x ∈ P is an essential vertex, there exist y ∈ RS
+ and λ ∈ R+ s.t. {x} = {z ∈ P :

y>z ≥ λ}.

Proof: Homework

Theorem 2.11 a(a(P )) = P for every down-monotone polyhedron P ⊆ RS
+.
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Proof: Homework

Let C be a clutter with V = V (C) and set A = M(C).

Fractional Independent Set: A fractional independent set of C is a vector x ∈ RV
+ with

the property that Ax ≤ 1. So, in other words, a fractional independent set is a weighting

of the vertices with the property that every edge gets a total weight of ≤ 1. Note that

a 0, 1 vector is a fractional independent set if and only if it is the incidence vector of an

independent set.

Covering Polyhedron: We define the covering polyhedron as follows:

Cov(C) = {x ∈ RV
+ : Ax ≤ 1}

So, in words, the covering polyhedron is the set of all fractional independent sets.

Perfect: The clutter C is perfect if Cov(C) is integral.

Observation 2.12

(i) Down(a(C)) ⊆ Cov(C)

(ii) Down(a(C)) = Cov(C) if and only if C is perfect.

Proof: Part (i) follows immediately from the observation that each incidence vector of an

edge in a(C) is contained in Cov(C). Part (ii) follows from the observation that every integral

point in Cov(C) is also contained in Down(a(C)). �

Observation 2.13 a(Down(C)) = Cov(C).

Proof:

a(Down(C)) = {y ∈ RV
+ : y>x ≤ 1 for every x ∈ Down(C)}

= {y ∈ RV
+ : y>x ≤ 1 whenever x is the incidence vector of an edge in C}

= Cov(C) �
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Define the following polyhedra:

P = Cov(C)

Q = Cov(a(C))

RI = Down(C)

PI = Down(a(C))

QI = Down(a(a(C))

So, by the previous observation, a(P ) = RI and a(Q) = PI . It is immediate from the

definitions that RI ⊆ QI and Observation 2.12 shows that we have PI ⊆ P and RI ⊆ QI ⊆ Q.

Further, this observation shows that C is perfect if and only if P = PI and a(C) is perfect if

and only if Q = QI .

Theorem 2.14 If C is perfect, then a(C) is perfect.

Proof: By our observations

C perfect ⇒ P = PI ⇒ a(P ) = a(PI) ⇒ RI = Q ⇒ QI = Q ⇒ a(C) perfect. �

Theorem 2.15 (Chvátal) If C is perfect, then

(i) a(a(C)) = C

(ii) C = CN(G) for a graph G.

Proof: For (i) we have

C perfect ⇒ P = PI ⇒ a(P ) = a(PI) ⇒ RI = Q ⇒ RI = QI ⇒ C = a(a(C)).

The proof of (ii) follows from this and an earlier exercise. �

Theorem 2.16 The following are equivalent.

(i) C is perfect.

(ii)
(
maxe∈E(C)w(e)

) (
maxf∈E(a(C)) `(f)

)
≥ w>` for every w, ` ∈ RV

+.

Proof: Homework.


