2 Polyhedra

Preliminaries

By default, we treat elements of \mathbb{R}^{m} as column vectors and if $x, y \in \mathbb{R}^{m}$ we let $x \cdot y=x^{\top} y$.
Polyhedron: A polyhedron $P \subseteq \mathbb{R}^{n}$ is any set of the form $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ where A is an $m \times n$ matrix and $b \in \mathbb{R}^{m}$. If $c \in \mathbb{R}^{n}$ and $x \cdot c \geq t$ for every $x \in P$ then $\{x \in P: x \cdot c=t\}$ is a face of P. A vertex of P is a face which consists of a single point.

Observation 2.1 If x is a vertex of the polyhedron P, then there exists $w \in \mathbb{Z}^{n}$ and $\lambda \in \mathbb{R}$ so that $\{x\}=\left\{y \in P: y^{\top} w \geq \lambda\right\}$.

Proof: Choose a vector u and a number μ so that $\{x\}=\left\{y \in P: y^{\top} u \geq \mu\right\}$. It follows from the density of the rationals that we may assume u is rational. Let N be the least common multiple of the denominators which appear in the entries of the vector u. Now setting $w=N u$ and $\lambda=N \mu$ we have that $\{x\}=\left\{y \in P: y^{\top} w \geq \lambda\right\}$ as required.

Pointed: We say that P is pointed if every minimal face is a vertex. Note that if $P \subseteq \mathbb{R}_{+}^{m}$ then P must be pointed.

Integral: A point $x \in \mathbb{R}^{m}$ is integral if every coordinate is an integer. A polyhedron $P \subseteq \mathbb{R}^{m}$ is integral if every minimal face contains an integral point. Note that a pointed polyhedron is integral if and only if every vertex is integral.

Convex Hull: The convex hull of a set $X \subseteq \mathbb{R}^{m}$ is the unique minimal convex set which includes X. Note that the convex hull of the rows of A is precisely

$$
\left\{y^{\top} A: y \in \mathbb{R}_{+}^{m} \text { and } y \cdot 1=1\right\}
$$

Up \& Down-Monotone: We say that a set $X \subseteq \mathbb{R}^{m}$ is up-monotone if whenever $x \in X$ and $y \geq x$ we have $y \in X$. Similarly, we say that X is down monotone in \mathbb{R}_{+}^{m} if whenever $x \in X$ and $0 \leq y \leq x$ we have $y \in X$.

Up \& Down-Hull: If $X \subseteq \mathbb{R}_{+}^{m}$ the up-hull of X is the unique minimal up-monotone set which includes X. Similarly, the down-hull of X in \mathbb{R}_{+}^{m} is the unique minimal downmonotone set in \mathbb{R}_{+}^{m} which includes X.

Essential Vertex: If $P \subseteq \mathbb{R}_{+}^{m}$ is down monotone in \mathbb{R}_{+}^{m} then a vertex x of P is essential if x is not contained in the down-hull of $P \backslash x$.

Observation 2.2 Let $P \subseteq \mathbb{R}_{+}^{m}$ be a polyhedron. Then
(i) If P is bounded, then P is the convex hull of its vertices.
(ii) If P is up-monotone, then P is the up-hull of its vertices.
(iii) If P is down-monotone in \mathbb{R}_{+}^{m}, then P is the down-hull of its essential vertices.

Up \& Down: Let \mathcal{C} be a clutter and let $M=M(\mathcal{C})$. We define the polyhedra $U p(\mathcal{C})$ to be the up-hull of the incidence vectors of the edges of \mathcal{C} and $\operatorname{Down}(\mathcal{C})$ to be the down-hull of the incidence vectors of the edges of \mathcal{C} in \mathbb{R}_{+}^{V}. Thus, we have:

$$
\begin{aligned}
U p(\mathcal{C}) & =\left\{x \in \mathbb{R}_{+}^{m}: x^{\top} \geq y^{\top} A \text { for some } y \in \mathbb{R}_{+}^{m} \text { with } y \cdot 1=1\right\} \\
\operatorname{Down}(\mathcal{C}) & =\left\{x \in \mathbb{R}_{+}^{m}: x^{\top} \leq y^{\top} A \text { for some } y \in \mathbb{R}_{+}^{m} \text { with } y \cdot 1=1\right\}
\end{aligned}
$$

Proposition 2.3 Let $\mathcal{C}=(V, E)$ be a clutter and let $X \subseteq \mathbb{R}_{+}^{V}$ be the set of incidence vectors of its edges. Then X is the set of vertices of $\operatorname{Up}(\mathcal{C})$ and the set of essential vertices of Down (\mathcal{C}).

Proof: Homework.

The Packing Polyhedron and Ideal Clutters

Blocking Polyhedra: If $P \subseteq \mathbb{R}_{+}^{S}$ is an up-monotone polyhedron, its blocker is

$$
b(P)=\left\{y \in \mathbb{R}_{+}^{S}: x^{\top} y \geq 1 \text { for every } x \in P\right\}
$$

Lemma 2.4 Let $P \subseteq \mathbb{R}_{+}^{S}$ be an up-monotone polyhedron.
(i) if $z \notin P$ there exist $y \in \mathbb{R}_{+}^{S}$ and $\lambda \in \mathbb{R}_{+}$s.t. $y \top z<\lambda$ and $y \top x \geq \lambda$ for every $x \in P$.
(ii) if $x \in P$ is a vertex, there exist $y \in \mathbb{R}_{+}^{S}$ and $\lambda \in \mathbb{R}_{+}$s.t. $\{x\}=\left\{z \in P: y^{\top} z \leq \lambda\right\}$.

Proof: (i): Since P is closed and convex and $z \notin P$, we may choose a hyperplane H which separates z and P. Choose a normal vector y for H and suppose (for a contradiction) that there are indices i, j with $y_{i}>0$ and $y_{j}<0$. Choose a point $x \in P$ and suppose that $y^{\top} x=t$. If we start at x and then increase the coordinate $x_{i}\left(x_{j}\right)$ we stay in P, and it follows that there are points in P whose dot product with y is equal to t^{\prime} for any $t^{\prime} \geq t\left(t^{\prime} \leq t\right)$. But this contradicts the assumption that H is disjoint from P. So, by possibly replacing y by $-y$ we may assume that $y \geq 0$. Choose $\lambda \neq 0$ so that $H=\left\{x \in \mathbb{R}_{+}^{S}: x^{\top} y=\lambda\right.$. It now follows from the fact that y, z, P all lie in the nonnegative orthant that $\lambda>0$. This completes the proof. The proof of (ii) is similar except that H is chosen to be a hyperplane which intersects P only at x.

Proposition $2.5 b(b(P))=P$ for every up-monotone polyhedron $P \subseteq \mathbb{R}_{+}^{S}$.
Proof: Every $x \in P$ satisfies $x \geq 0$ and $x^{\top} y \geq 1$ for every $y \in b(P)$ by definition. It follows from this that $x \in b(b(P))$, so $P \subseteq b(b(P))$.

Suppose (for a contradiction) that $b(b(P)) \nsubseteq P$, and choose $z \in b(b(P)) \backslash P$. Apply the lemma to choose a vector $y \in \mathbb{R}_{+}^{S}$ and $\lambda \in \mathbb{R}_{+}$. Now, replacing y by the vector $\frac{1}{\lambda} y$ gives us $y^{\top} z<1$ and $y^{\top} x \geq 1$ for all $x \in P$. It follows from the latter that $y \in b(P)$, but then the former condition contradicts $z \in b(b(P))$.

Let \mathcal{C} be a clutter with $V=V(\mathcal{C})$, set $A=M(\mathcal{C})$ and $B=M(b(\mathcal{C}))$.
Fractional Transversal: A fractional transversal of \mathcal{C} is a vector $x \in \mathbb{R}_{+}^{V}$ with the property that $A x \geq 1$. So, in other words, a fractional transversal is a weighting of the vertices with the property that every edge gets a total weight of ≥ 1. Note that a 0,1 vector is a fractional transversal if and only if it is the incidence vector of a transversal.

Packing Polyhedron: We define the packing polyhedron as follows:

$$
\operatorname{Pack}(\mathcal{C})=\left\{x \in \mathbb{R}_{+}^{V}: A x \geq 1\right\}
$$

So, in words, the packing polyhedron is the set of all fractional transversals.
Ideal: The clutter \mathcal{C} is ideal if $\operatorname{Pack}(\mathcal{C})$ is integral.

Observation 2.6

$$
\begin{equation*}
U p(b(\mathcal{C})) \subseteq \operatorname{Pack}(\mathcal{C}) \tag{i}
\end{equation*}
$$

(ii) $\quad \operatorname{Up}(b(\mathcal{C}))=\operatorname{Pack}(\mathcal{C})$ if and only if \mathcal{C} is ideal.

Proof: Part (i) follows immediately from the observation that each incidence vector of an edge in $b(\mathcal{C})$ is contained in $\operatorname{Pack}(\mathcal{C})$. Part (ii) follows from the observation that every integral point in $\operatorname{Pack}(\mathcal{C})$ is also contained in $\operatorname{Up}(b(\mathcal{C}))$.

Observation $2.7 b(U p(\mathcal{C}))=\operatorname{Pack}(\mathcal{C})$

Proof:

$$
\begin{aligned}
b(U p(\mathcal{C})) & =\left\{y \in \mathbb{R}_{+}^{V}: y^{\top} x \geq 1 \text { for every } x \in U p(\mathcal{C})\right\} \\
& =\left\{y \in \mathbb{R}_{+}^{V}: y^{\top} x \geq 1 \text { whenever } x \text { is the incidence vector of an edge of } \mathcal{C}\right\} \\
& =\operatorname{Pack}(\mathcal{C}) \quad \square
\end{aligned}
$$

For the remaining two results in this section, let us name the following polyhedra:

$$
\begin{aligned}
P & =\operatorname{Pack}(\mathcal{C}) \\
Q & =\operatorname{Pack}(b(\mathcal{C})) \\
P_{I} & =U p(b(\mathcal{C})) \\
Q_{I} & =U p(\mathcal{C})
\end{aligned}
$$

So, by the previous observation $b(P)=Q_{I}$ and $b(Q)=P_{I}$. Observation 2.6 shows that $P_{I} \subseteq P$ and $Q_{I} \subseteq Q$ and further that \mathcal{C} is ideal if and only if $P=P_{I}$ and $b(\mathcal{C})$ is idea if and only if $Q=Q_{I}$.

Theorem 2.8 (Lehman) \mathcal{C} is ideal if and only if $b(\mathcal{C})$ is ideal.
Proof:

$$
\begin{aligned}
\mathcal{C} \text { is ideal } & \Leftrightarrow P=P_{I} \\
& \Leftrightarrow b(P)=b\left(P_{I}\right) \\
& \Leftrightarrow Q_{I}=Q \\
& \Leftrightarrow b(\mathcal{C}) \text { is ideal. }
\end{aligned}
$$

Theorem 2.9 (Lehman's width-length inequality) The following are equivalent
(i) \mathcal{C} and $b(\mathcal{C})$ are ideal.
(ii) $\quad\left(\min _{e \in E(\mathcal{C})} w(e)\right)\left(\min _{f \in E(b(\mathcal{C}))} \ell(f)\right) \leq w^{\top} \ell$ for every $w, \ell \in \mathbb{R}_{+}^{V}$.
(here we let $x(S)=\sum_{s \in S} x(s)$ whenever $x \in \mathbb{R}^{V}$ and $S \subseteq V$).
Proof: The result is trivial whenever $\min _{e \in E(\mathcal{C})} w(e)=0$ or $\min _{f \in E(b(\mathcal{C}))} \ell(f)=0$. Furthermore, it is invariant under scaling w or ℓ by a positive constant, so we may assume that $\min _{e \in E(\mathcal{C})} w(e)=1=\min _{f \in E(b(\mathcal{C}))} \ell(f)$. We now have the following (the first identity is a consequence of these assumptions).

$$
\begin{aligned}
(i i) & \Leftrightarrow w^{\top} \ell \geq 1 \text { whenever } w \in P \text { and } \ell \in Q \\
& \Leftrightarrow P \subseteq b(Q) \text { and } Q \subseteq b(P) \\
& \Leftrightarrow P \subseteq P_{I} \text { and } Q \subseteq Q_{I} \\
& \Leftrightarrow P=P_{I} \text { and } Q=Q_{I} \\
& \Leftrightarrow \mathcal{C} \text { and } b(\mathcal{C}) \text { are ideal } \\
& \Leftrightarrow(i) \quad \square
\end{aligned}
$$

The Covering Polyhedron and Perfect Clutters

Antiblocker: If $P \subseteq \mathbb{R}_{+}^{S}$ is a down-monotone polyhedron, its antiblocker is

$$
a(P)=\left\{y \in \mathbb{R}_{+}^{S}: x^{\top} y \leq 1 \text { for every } x \in P\right\}
$$

Lemma 2.10 Let $P \subseteq \mathbb{R}_{+}^{S}$ be a down-monotone polyhedron.
(i) if $z \notin P$ there exist $y \in \mathbb{R}_{+}^{S}$ and $\lambda \in \mathbb{R}_{+}$s.t. $y \top z>\lambda$ and $y \top x \leq \lambda$ for every $x \in P$.
(ii) if $x \in P$ is an essential vertex, there exist $y \in \mathbb{R}_{+}^{S}$ and $\lambda \in \mathbb{R}_{+}$s.t. $\{x\}=\{z \in P$: $\left.y^{\top} z \geq \lambda\right\}$.

Proof: Homework
Theorem $2.11 a(a(P))=P$ for every down-monotone polyhedron $P \subseteq \mathbb{R}_{+}^{S}$.

Proof: Homework

Let \mathcal{C} be a clutter with $V=V(\mathcal{C})$ and set $A=M(\mathcal{C})$.
Fractional Independent Set: A fractional independent set of \mathcal{C} is a vector $x \in \mathbb{R}_{+}^{V}$ with the property that $A x \leq 1$. So, in other words, a fractional independent set is a weighting of the vertices with the property that every edge gets a total weight of ≤ 1. Note that a 0,1 vector is a fractional independent set if and only if it is the incidence vector of an independent set.

Covering Polyhedron: We define the covering polyhedron as follows:

$$
\operatorname{Cov}(\mathcal{C})=\left\{x \in \mathbb{R}_{+}^{V}: A x \leq 1\right\}
$$

So, in words, the covering polyhedron is the set of all fractional independent sets.

Perfect: The clutter \mathcal{C} is perfect if $\operatorname{Cov}(\mathcal{C})$ is integral.

Observation 2.12
(i) $\operatorname{Down}(a(\mathcal{C})) \subseteq \operatorname{Cov}(\mathcal{C})$
(ii) $\operatorname{Down}(a(\mathcal{C}))=\operatorname{Cov}(\mathcal{C})$ if and only if \mathcal{C} is perfect.

Proof: Part (i) follows immediately from the observation that each incidence vector of an edge in $a(\mathcal{C})$ is contained in $\operatorname{Cov}(\mathcal{C})$. Part (ii) follows from the observation that every integral point in $\operatorname{Cov}(\mathcal{C})$ is also contained in $\operatorname{Down}(a(\mathcal{C}))$.

Observation $2.13 a(\operatorname{Down}(\mathcal{C}))=\operatorname{Cov}(\mathcal{C})$.

Proof:

$$
\begin{aligned}
a(\operatorname{Down}(\mathcal{C})) & =\left\{y \in \mathbb{R}_{+}^{V}: y^{\top} x \leq 1 \text { for every } x \in \operatorname{Down}(\mathcal{C})\right\} \\
& =\left\{y \in \mathbb{R}_{+}^{V}: y^{\top} x \leq 1 \text { whenever } x \text { is the incidence vector of an edge in } \mathcal{C}\right\} \\
& =\operatorname{Cov}(\mathcal{C})
\end{aligned}
$$

Define the following polyhedra:

$$
\begin{aligned}
P & =\operatorname{Cov}(\mathcal{C}) \\
Q & =\operatorname{Cov}(a(\mathcal{C})) \\
R_{I} & =\operatorname{Down}(\mathcal{C}) \\
P_{I} & =\operatorname{Down}(a(\mathcal{C})) \\
Q_{I} & =\operatorname{Down}(a(a(\mathcal{C}))
\end{aligned}
$$

So, by the previous observation, $a(P)=R_{I}$ and $a(Q)=P_{I}$. It is immediate from the definitions that $R_{I} \subseteq Q_{I}$ and Observation 2.12 shows that we have $P_{I} \subseteq P$ and $R_{I} \subseteq Q_{I} \subseteq Q$. Further, this observation shows that \mathcal{C} is perfect if and only if $P=P_{I}$ and $a(\mathcal{C})$ is perfect if and only if $Q=Q_{I}$.

Theorem 2.14 If \mathcal{C} is perfect, then $a(\mathcal{C})$ is perfect.

Proof: By our observations

$$
\mathcal{C} \text { perfect } \Rightarrow P=P_{I} \Rightarrow a(P)=a\left(P_{I}\right) \Rightarrow R_{I}=Q \Rightarrow Q_{I}=Q \Rightarrow a(\mathcal{C}) \text { perfect. }
$$

Theorem 2.15 (Chvátal) If \mathcal{C} is perfect, then
(i) $\quad a(a(\mathcal{C}))=\mathcal{C}$
(ii) $\mathcal{C}=C N(G)$ for a graph G.

Proof: For (i) we have
\mathcal{C} perfect $\Rightarrow P=P_{I} \Rightarrow a(P)=a\left(P_{I}\right) \Rightarrow R_{I}=Q \Rightarrow R_{I}=Q_{I} \Rightarrow \mathcal{C}=a(a(\mathcal{C}))$.
The proof of (ii) follows from this and an earlier exercise.

Theorem 2.16 The following are equivalent.
(i) \mathcal{C} is perfect.
(ii) $\left(\max _{e \in E(\mathcal{C})} w(e)\right)\left(\max _{f \in E(a(\mathcal{C}))} \ell(f)\right) \geq w^{\top} \ell$ for every $w, \ell \in \mathbb{R}_{+}^{V}$.

Proof: Homework.

