2 Polyhedra

Preliminaries

By default, we treat elements of \mathbb{R}^m as column vectors and if $x, y \in \mathbb{R}^m$ we let $x \cdot y = x^\top y$.

Polyhedron: A polyhedron $P \subseteq \mathbb{R}^n$ is any set of the form $\{x \in \mathbb{R}^n : Ax \leq b\}$ where A is an $m \times n$ matrix and $b \in \mathbb{R}^m$. If $c \in \mathbb{R}^n$ and $x \cdot c \geq t$ for every $x \in P$ then $\{x \in P : x \cdot c = t\}$ is a face of P. A vertex of P is a face which consists of a single point.

Observation 2.1 If x is a vertex of the polyhedron P, then there exists $w \in \mathbb{Z}^n$ and $\lambda \in \mathbb{R}$ so that $\{x\} = \{y \in P : y^\top w \ge \lambda\}$.

Proof: Choose a vector u and a number μ so that $\{x\} = \{y \in P : y^{\top}u \geq \mu\}$. It follows from the density of the rationals that we may assume u is rational. Let N be the least common multiple of the denominators which appear in the entries of the vector u. Now setting w = Nu and $\lambda = N\mu$ we have that $\{x\} = \{y \in P : y^{\top}w \geq \lambda\}$ as required. \square

Pointed: We say that P is *pointed* if every minimal face is a vertex. Note that if $P \subseteq \mathbb{R}^m_+$ then P must be pointed.

Integral: A point $x \in \mathbb{R}^m$ is *integral* if every coordinate is an integer. A polyhedron $P \subseteq \mathbb{R}^m$ is *integral* if every minimal face contains an integral point. Note that a pointed polyhedron is integral if and only if every vertex is integral.

Convex Hull: The convex hull of a set $X \subseteq \mathbb{R}^m$ is the unique minimal convex set which includes X. Note that the convex hull of the rows of A is precisely

$$\{y^{\top}A: y \in \mathbb{R}^m_+ \text{ and } y \cdot 1 = 1\}.$$

Up & Down-Monotone: We say that a set $X \subseteq \mathbb{R}^m$ is *up-monotone* if whenever $x \in X$ and $y \ge x$ we have $y \in X$. Similarly, we say that X is *down monotone* in \mathbb{R}^m_+ if whenever $x \in X$ and $0 \le y \le x$ we have $y \in X$.

Up & Down-Hull: If $X \subseteq \mathbb{R}^m_+$ the *up-hull* of X is the unique minimal up-monotone set which includes X. Similarly, the *down-hull* of X in \mathbb{R}^m_+ is the unique minimal down-monotone set in \mathbb{R}^m_+ which includes X.

Essential Vertex: If $P \subseteq \mathbb{R}^m_+$ is down monotone in \mathbb{R}^m_+ then a vertex x of P is essential if x is not contained in the down-hull of $P \setminus x$.

Observation 2.2 Let $P \subseteq \mathbb{R}^m_+$ be a polyhedron. Then

- (i) If P is bounded, then P is the convex hull of its vertices.
- (ii) If P is up-monotone, then P is the up-hull of its vertices.
- (iii) If P is down-monotone in \mathbb{R}^m_+ , then P is the down-hull of its essential vertices.

Up & Down: Let \mathcal{C} be a clutter and let $M = M(\mathcal{C})$. We define the polyhedra $Up(\mathcal{C})$ to be the up-hull of the incidence vectors of the edges of \mathcal{C} and $Down(\mathcal{C})$ to be the down-hull of the incidence vectors of the edges of \mathcal{C} in \mathbb{R}^V_+ . Thus, we have:

$$Up(\mathcal{C}) = \{ x \in \mathbb{R}_+^m : x^\top \ge y^\top A \text{ for some } y \in \mathbb{R}_+^m \text{ with } y \cdot 1 = 1 \}$$
$$Down(\mathcal{C}) = \{ x \in \mathbb{R}_+^m : x^\top \le y^\top A \text{ for some } y \in \mathbb{R}_+^m \text{ with } y \cdot 1 = 1 \}$$

Proposition 2.3 Let C = (V, E) be a clutter and let $X \subseteq \mathbb{R}^{V}_{+}$ be the set of incidence vectors of its edges. Then X is the set of vertices of Up(C) and the set of essential vertices of Down(C).

Proof: Homework.

The Packing Polyhedron and Ideal Clutters

Blocking Polyhedra: If $P \subseteq \mathbb{R}_+^S$ is an up-monotone polyhedron, its *blocker* is

$$b(P) = \{ y \in \mathbb{R}_+^S : x^\top y \ge 1 \text{ for every } x \in P \}$$

Lemma 2.4 Let $P \subseteq \mathbb{R}^S_+$ be an up-monotone polyhedron.

- (i) if $z \notin P$ there exist $y \in \mathbb{R}^S_+$ and $\lambda \in \mathbb{R}_+$ s.t. $y \top z < \lambda$ and $y \top x \ge \lambda$ for every $x \in P$.
- (ii) if $x \in P$ is a vertex, there exist $y \in \mathbb{R}^S_+$ and $\lambda \in \mathbb{R}_+$ s.t. $\{x\} = \{z \in P : y^\top z \le \lambda\}$.

Proof: (i): Since P is closed and convex and $z \notin P$, we may choose a hyperplane H which separates z and P. Choose a normal vector y for H and suppose (for a contradiction) that there are indices i, j with $y_i > 0$ and $y_j < 0$. Choose a point $x \in P$ and suppose that $y^{\top}x = t$. If we start at x and then increase the coordinate x_i (x_j) we stay in P, and it follows that there are points in P whose dot product with y is equal to t' for any $t' \geq t$ $(t' \leq t)$. But this contradicts the assumption that H is disjoint from P. So, by possibly replacing y by -y we may assume that $y \geq 0$. Choose $\lambda \neq 0$ so that $H = \{x \in \mathbb{R}_+^S : x^{\top}y = \lambda \text{. It now follows from the fact that } y, z, P \text{ all lie in the nonnegative orthant that } \lambda > 0$. This completes the proof. The proof of (ii) is similar except that H is chosen to be a hyperplane which intersects P only at x. \square

Proposition 2.5 b(b(P)) = P for every up-monotone polyhedron $P \subseteq \mathbb{R}^S_+$.

Proof: Every $x \in P$ satisfies $x \ge 0$ and $x^\top y \ge 1$ for every $y \in b(P)$ by definition. It follows from this that $x \in b(b(P))$, so $P \subseteq b(b(P))$.

Suppose (for a contradiction) that $b(b(P)) \not\subseteq P$, and choose $z \in b(b(P)) \setminus P$. Apply the lemma to choose a vector $y \in \mathbb{R}_+^S$ and $\lambda \in \mathbb{R}_+$. Now, replacing y by the vector $\frac{1}{\lambda}y$ gives us $y^{\top}z < 1$ and $y^{\top}x \geq 1$ for all $x \in P$. It follows from the latter that $y \in b(P)$, but then the former condition contradicts $z \in b(b(P))$.

Let \mathcal{C} be a clutter with $V = V(\mathcal{C})$, set $A = M(\mathcal{C})$ and $B = M(b(\mathcal{C}))$.

Fractional Transversal: A fractional transversal of \mathcal{C} is a vector $x \in \mathbb{R}^{V}_{+}$ with the property that $Ax \geq 1$. So, in other words, a fractional transversal is a weighting of the vertices with the property that every edge gets a total weight of ≥ 1 . Note that a 0, 1 vector is a fractional transversal if and only if it is the incidence vector of a transversal.

Packing Polyhedron: We define the packing polyhedron as follows:

$$Pack(\mathcal{C}) = \{x \in \mathbb{R}^{V}_{+} : Ax \ge 1\}$$

So, in words, the packing polyhedron is the set of all fractional transversals.

Ideal: The clutter C is *ideal* if Pack(C) is integral.

Observation 2.6

- (i) $Up(b(\mathcal{C})) \subseteq Pack(\mathcal{C})$
- (ii) $Up(b(\mathcal{C})) = Pack(\mathcal{C})$ if and only if \mathcal{C} is ideal.

Proof: Part (i) follows immediately from the observation that each incidence vector of an edge in $b(\mathcal{C})$ is contained in $Pack(\mathcal{C})$. Part (ii) follows from the observation that every integral point in $Pack(\mathcal{C})$ is also contained in $Up(b(\mathcal{C}))$.

Observation 2.7
$$b(Up(C)) = Pack(C)$$

Proof:

$$b(Up(\mathcal{C})) = \{ y \in \mathbb{R}_+^V : \ y^\top x \ge 1 \text{ for every } x \in Up(\mathcal{C}) \ \}$$
$$= \{ y \in \mathbb{R}_+^V : \ y^\top x \ge 1 \text{ whenever } x \text{ is the incidence vector of an edge of } \mathcal{C} \ \}$$
$$= Pack(\mathcal{C}) \qquad \square$$

For the remaining two results in this section, let us name the following polyhedra:

$$P = Pack(\mathcal{C})$$

$$Q = Pack(b(\mathcal{C}))$$

$$P_I = Up(b(\mathcal{C}))$$

$$Q_I = Up(\mathcal{C})$$

So, by the previous observation $b(P) = Q_I$ and $b(Q) = P_I$. Observation 2.6 shows that $P_I \subseteq P$ and $Q_I \subseteq Q$ and further that \mathcal{C} is ideal if and only if $P = P_I$ and $b(\mathcal{C})$ is idea if and only if $Q = Q_I$.

Theorem 2.8 (Lehman) C is ideal if and only if b(C) is ideal.

Proof:

$$\mathcal{C}$$
 is ideal $\Leftrightarrow P = P_I$
 $\Leftrightarrow b(P) = b(P_I)$
 $\Leftrightarrow Q_I = Q$
 $\Leftrightarrow b(\mathcal{C})$ is ideal.

Theorem 2.9 (Lehman's width-length inequality) The following are equivalent

- (i) C and b(C) are ideal.
- (ii) $\left(\min_{e \in E(\mathcal{C})} w(e)\right) \left(\min_{f \in E(b(\mathcal{C}))} \ell(f)\right) \leq w^{\top} \ell \text{ for every } w, \ell \in \mathbb{R}_{+}^{V}.$

(here we let $x(S) = \sum_{s \in S} x(s)$ whenever $x \in \mathbb{R}^V$ and $S \subseteq V$).

Proof: The result is trivial whenever $\min_{e \in E(\mathcal{C})} w(e) = 0$ or $\min_{f \in E(b(\mathcal{C}))} \ell(f) = 0$. Furthermore, it is invariant under scaling w or ℓ by a positive constant, so we may assume that $\min_{e \in E(\mathcal{C})} w(e) = 1 = \min_{f \in E(b(\mathcal{C}))} \ell(f)$. We now have the following (the first identity is a consequence of these assumptions).

$$(ii) \Leftrightarrow w^{\top} \ell \geq 1$$
 whenever $w \in P$ and $\ell \in Q$
 $\Leftrightarrow P \subseteq b(Q)$ and $Q \subseteq b(P)$
 $\Leftrightarrow P \subseteq P_I$ and $Q \subseteq Q_I$
 $\Leftrightarrow P = P_I$ and $Q = Q_I$
 $\Leftrightarrow \mathcal{C}$ and $b(\mathcal{C})$ are ideal
 $\Leftrightarrow (i)$

The Covering Polyhedron and Perfect Clutters

Antiblocker: If $P \subseteq \mathbb{R}_+^S$ is a down-monotone polyhedron, its *antiblocker* is

$$a(P) = \{ y \in \mathbb{R}_+^S : x^\top y \le 1 \text{ for every } x \in P \}$$

Lemma 2.10 Let $P \subseteq \mathbb{R}_+^S$ be a down-monotone polyhedron.

- (i) if $z \notin P$ there exist $y \in \mathbb{R}^S_+$ and $\lambda \in \mathbb{R}_+$ s.t. $y \top z > \lambda$ and $y \top x \leq \lambda$ for every $x \in P$.
- (ii) if $x \in P$ is an essential vertex, there exist $y \in \mathbb{R}_+^S$ and $\lambda \in \mathbb{R}_+$ s.t. $\{x\} = \{z \in P : y^\top z \ge \lambda\}$.

Proof: Homework

Theorem 2.11 a(a(P)) = P for every down-monotone polyhedron $P \subseteq \mathbb{R}_+^S$.

Proof: Homework

Let \mathcal{C} be a clutter with $V = V(\mathcal{C})$ and set $A = M(\mathcal{C})$.

Fractional Independent Set: A fractional independent set of \mathcal{C} is a vector $x \in \mathbb{R}^{V}_{+}$ with the property that $Ax \leq 1$. So, in other words, a fractional independent set is a weighting of the vertices with the property that every edge gets a total weight of ≤ 1 . Note that a 0,1 vector is a fractional independent set if and only if it is the incidence vector of an independent set.

Covering Polyhedron: We define the covering polyhedron as follows:

$$Cov(\mathcal{C}) = \{x \in \mathbb{R}^V_+ : Ax \le 1\}$$

So, in words, the covering polyhedron is the set of all fractional independent sets.

Perfect: The clutter C is perfect if Cov(C) is integral.

Observation 2.12

- (i) $Down(a(\mathcal{C})) \subseteq Cov(\mathcal{C})$
- (ii) $Down(a(\mathcal{C})) = Cov(\mathcal{C})$ if and only if \mathcal{C} is perfect.

Proof: Part (i) follows immediately from the observation that each incidence vector of an edge in $a(\mathcal{C})$ is contained in $Cov(\mathcal{C})$. Part (ii) follows from the observation that every integral point in $Cov(\mathcal{C})$ is also contained in $Down(a(\mathcal{C}))$.

Observation 2.13 $a(Down(\mathcal{C})) = Cov(\mathcal{C})$.

Proof:

$$\begin{split} a(Down(\mathcal{C})) &= \{ y \in \mathbb{R}_+^V : y^\top x \leq 1 \text{ for every } x \in Down(\mathcal{C}) \} \\ &= \{ y \in \mathbb{R}_+^V : y^\top x \leq 1 \text{ whenever } x \text{ is the incidence vector of an edge in } \mathcal{C} \} \\ &= Cov(\mathcal{C}) \qquad \Box \end{split}$$

Define the following polyhedra:

$$P = Cov(C)$$

$$Q = Cov(a(C))$$

$$R_I = Down(C)$$

$$P_I = Down(a(C))$$

$$Q_I = Down(a(a(C)))$$

So, by the previous observation, $a(P) = R_I$ and $a(Q) = P_I$. It is immediate from the definitions that $R_I \subseteq Q_I$ and Observation 2.12 shows that we have $P_I \subseteq P$ and $R_I \subseteq Q_I \subseteq Q$. Further, this observation shows that \mathcal{C} is perfect if and only if $P = P_I$ and $a(\mathcal{C})$ is perfect if and only if $Q = Q_I$.

Theorem 2.14 If C is perfect, then a(C) is perfect.

Proof: By our observations

$$\mathcal{C}$$
 perfect $\Rightarrow P = P_I \Rightarrow a(P) = a(P_I) \Rightarrow R_I = Q \Rightarrow Q_I = Q \Rightarrow a(\mathcal{C})$ perfect. \square

Theorem 2.15 (Chvátal) If C is perfect, then

- (i) $a(a(\mathcal{C})) = \mathcal{C}$
- (ii) C = CN(G) for a graph G.

Proof: For (i) we have

$$\mathcal{C}$$
 perfect $\Rightarrow P = P_I \Rightarrow a(P) = a(P_I) \Rightarrow R_I = Q \Rightarrow R_I = Q_I \Rightarrow \mathcal{C} = a(a(\mathcal{C})).$

The proof of (ii) follows from this and an earlier exercise. \Box

Theorem 2.16 The following are equivalent.

- (i) C is perfect.
- (ii) $\left(\max_{e \in E(\mathcal{C})} w(e)\right) \left(\max_{f \in E(a(\mathcal{C}))} \ell(f)\right) \ge w^{\top} \ell \text{ for every } w, \ell \in \mathbb{R}_{+}^{V}.$

Proof: Homework.