
3 Linear Programming

LP Duality

Vectors in this section are column vectors by default. The dimensions of our vectors are

frequently not stated, but must be inferred from context. If a, b are vectors from the same

space, we write a ≤ b if ai ≤ bi for every coordinate i. Similarly, we write a ≥ 0 if a is

coordinatewise greater than the vector of zeros.

Cone: A set C ⊆ Rn is a cone if λx ∈ C whenever x ∈ C and λ ≥ 0.

Polyhedral Cone: A polyhedral cone is any set of the form {Ax : x ≥ 0} where A is a real

m× n matrix.

Lemma 3.1 (Farkas Lemma) If A is an m× n real matrix and b ∈ Rm, then exactly one

of the following holds:

(i) There exists x ≥ 0 so that Ax = b.

(ii) There exists y so that y>A ≥ 0 and y>b < 0.

Note: Lemma 3.1 is equivalent to the obvious fact that given a point b and a cone C =

{Ax : x ≥ 0}, either (i) b ∈ C or (ii) there is a hyperplane (with normal y) through the

origin separating b from C.

Hint for Proof: It is immediate that (i) and (ii) are mutually exclusive as otherwise we would

have 0 > y>b = y>Ax ≥ 0 which is contradictory. Now, assume that (i) does not hold. It

then follows from the fact that C is closed and convex that there is a hyperplane H which

separates b from C. Shift H to a parallel hyperplane H ′ (keeping the same normal vector)

until it meets the cone C. Since 0 is in every minimal face of C, it follows that 0 ∈ H ′. Now

by possibly replacing y by −y we may arrange that y>b < 0 and y>A ≥ 0.

Corollary 3.2 If A is an m×n matrix and b ∈ Rm, then exactly one of the following holds:

(i) There exists x so that Ax ≤ b.

(ii) There exists y ≥ 0 so that y>A = 0 and y>b < 0.
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Proof: It is immediate that (i) and (ii) are mutually exclusive, as otherwise we would have

0 = y>Ax ≤ y>b < 0 which is contradictory.

To see that one of these conclusions must hold, consider the matrix A′ = [I A − A] and

apply the Farkas Lemma to A′ and b. If there exists a vector z> = [w>, x>p , x
>
m] ≥ 0 so that

A′z = b, then we have that A(xp − xm) ≤ b, so (i) holds. Otherwise, there must be a vector

y so that y>A′ ≥ 0 and y>b < 0, but then y ≥ 0 and y>A = 0 so (ii) holds. �

Linear Programming: Fix an m× n matrix A and vectors b ∈ Rm and c ∈ Rn. A linear

program and the associated dual are given as follows:

LP (primal) Dual

maximize c>x minimize y>b

s.t. x ≥ 0 s.t. y ≥ 0

Ax ≤ b y>A ≥ c

We say that a point x (y) satisfying x ≥ 0 and Ax ≤ b (y ≥ 0 and y>A ≥ c) is a

feasible point for the linear program (dual). If no such point exists the problem is called

infeasible. If the primal (dual) problem is feasible but has no maximum (minimum), it is

called unbounded.

Observation 3.3 (Weak Duality) If x is feasible for the Linear Program and y is feasible

for the dual, then

c>x ≤ y>b

Proof: c>x ≤ (y>A)x = y>(Ax) ≤ y>b �

Note: It follows from the above that any feasible point in the dual gives an upper bound on

the primal problem (and vice versa). So, in particular, if the dual problem is feasible, then

the primal problem is bounded.

Theorem 3.4 (Strong Duality) If the primal and dual problem are feasible, then the op-

timum points x, y satisfy c>x = y>b.



3

Proof: Consider the following equation

−I 0

A 0

−c> b>

0 −I
0 −A>


[
x

y

]
≤



0

b

0

0

−c


If there exist x, y satisfying the above equation, then x ≥ 0, Ax ≤ b so x is feasible, y ≥ 0

and y>A ≥ c so y is feasible. Furthermore −c>x + b>y ≤ 0 so y>b ≤ c>x and by Weak

Duality we must then have y>b = c>x and we are finished. Otherwise, by Corollary 3.2 there

exists [u>, y>, λ, w>, x>] ≥ 0 satisfying

[u>, y>, λ, w>, x>]



−I 0

A 0

−c> b>

0 −I
0 −A>


= 0 and [u>, y>, λ, w>, x>]



0

b

0

0

−c


< 0

This gives the following:

y>A− λc> ≥ 0 (1)

Ax− λb ≤ 0 (2)

y>b < c>x (3)

If λ > 0, then scaling the vector [u>, y>, λ, w>, x>] by 1/λ we may assume that λ = 1.

However, then (1) and (2) show that x and y are feasible in the primal and dual (respectively)

and (3) contradicts Weak Duality.

Otherwise we have λ = 0. Now, by (3), either y>b < 0 or c>x > 0. In the former case,

we claim that the dual problem is unbounded (which contradicts the assumption that the

primal is feasible). To see this, let yf be any feasible point in the dual, let µ be a positive

number, and consider the vector yf + µy. We have yf + µy ≥ 0 and

(yf + µy)>A = y>f A+ µy>A ≥ c>.

Thus yf +µy is feasible in the dual and (yf +µy)>b = y>f b+µ(y>b) can be made arbitrarily

small by choosing µ sufficiently large. If c>x > 0 then a similar argument shows that the

primal is unbounded (again giving us a contradiction). �
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Integer Programming and Linear Systems

Integral, Rational: A vector or matrix is integral (rational) if every entry is integral

(rational).

Integer Programming: An integer program is a linear program with the added constraint

that the feasible point must be integral. For instance, the following:

maximize c>x

s.t. Ax ≤ b

x ≥ 0

x integral

Unlike linear programming problems which (under suitable assumptions) can be computed

in polynomial time, integer programming is known to be NP-hard even in many special

cases (so assuming P 6= NP , there would be no polynomial time solution). Many classical

combinatorial problems can be expressed as integer programs. For instance, if G is a graph

and A is the vertex-independent set incidence matrix, then

χ(G) = min{1>x : Ax ≥ 1, x ≥ 0, and x is integral}

ω(G) = max{y>1 : y>A ≤ 1, y ≥ 0, and y is integral}.

Linear System: A linear system is any set of linear inequalities. For instance:

Ax ≤ b

x ≥ 0

We view a linear system as a linear program without the objective function. Now, let us

consider extending the above linear system to a linear program using an integral objective

function w. Now we define the following parameters:

gw = max{w>x : Ax ≤ b, x ≥ 0 and x integral}

fw = min{y>b : y>A ≥ w, y ≥ 0 and y integral}

Dropping the integrality constraints give us the following fractional parameters:

g∗w = max{w>x : Ax ≤ b and x ≥ 0}

f ∗w = min{y>b : y>A ≥ w and y ≥ 0}
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Now, assuming both the primal and dual are feasible, LP-duality gives us the following:

gw ≤ g∗w = f ∗w ≤ fw (4)

Integral: Our linear system is integral if gw = g∗w for every integral w. Note that our system

is integral if and only if the polyhedron {x : Ax ≤ b, x ≥ 0} is integral.

Totally Dual Integral: Our linear system is totally dual integral (henceforth abbreviated

TDI ) if fw = f ∗w for every integral w. Note: here we permit that the dual program to be

unbounded.

Theorem 3.5 (Edmonds-Giles) Let b ∈ ZS and let A be a rational matrix indexed by

R× S. If the linear system Ax ≤ b and x ≥ 0 is TDI, then it is integral.

Proof: Let P = {x ∈ RS
+ : Ax ≤ b}. Then it suffices to show that P is integral. Since P is

contained in the nonnegative orthant, it is pointed, so it suffices to show that every vertex

of P is an integral point. Let x̃ be a vertex of P and choose an integral objective function

c ∈ RS so that x̃ is the unique optimum for the linear program max{c>x : x ∈ P}. Now,

since c is integral, and our linear system is TDI, we have

c>x̃ = max{c>x : x ∈ RS
+ and Ax ≤ b } = min{b>y : y ∈ RR

+ and y>A ≥ c } ∈ Z.

Choose a positive integer N so that x̃ is still the unique optimum of the linear program

max{d>x : x ∈ P} whenever d ist(c, d) < 1
N

. Let c1 be the objective function Nc and note

that c>x̃ = Nc>x̃ is in Z. Next, we let s ∈ S be given, and we let c2 be the vector obtained

from c1 by incrementing the coordinate indexed by s by 1. Now, as above, we have

c>2 x̃ = max{c>2 x : x ∈ RS
+ and Ax ≤ b } = min{b>y : y ∈ RR

+ and y>A ≥ c2 } ∈ Z.

But then, x̃(s) = c>2 x̃−c>1 x̃ ∈ Z, so the s coordinate of x̃ is an integer. Since s was arbitrary,

x̃ is integral, and since x̃ was arbitrary, P is integral. �

Note: In terms of which inequalities in equation (4) hold for all integral w, there are only

two interesting possibilities. If gw = g∗w for every integral w, then our system is integral. If

fw = f ∗w holds for all integral w, then our system is TDI, but then the above theorem tells

us that gw = g∗w also holds for all w, so we have fw = gw for all integral w.



6

Packing and Covering Systems

Packing and Covering Systems: Let C be a clutter with clutter matrix M . We define

the following two linear systems for C.

Packing System Covering System

Mx ≥ 1 Mx ≤ 1

x ≥ 0 x ≥ 0

Note that the set of feasible points for the packing system is precisely our packing polyhedron

while the feasible points for the covering system constitute our covering polyhedron.

Objective Function 1: It is natural to extend the above systems to linear programs by

using the objective function 1. Considering the integer programs associated with these LP’s

and their duals, we rediscover our packing and covering parameters as follows:

τ(C) = min{1>x : Mx ≥ 1, x ≥ 0, and x integral}

ν(C) = max{y>1 : y>M ≤ 1, y ≥ 0, and y integral}

α(C) = max{1>x : Mx ≤ 1, x ≥ 0, and x integral}

κ(C) = min{y>x : y>M ≥ 1, y ≥ 0, and y integral}

Fractional Parameters: Dropping the integrality constraints, gives us the following frac-

tional parameters:

τ ∗(C) = min{1>x : Mx ≥ 1, x ≥ 0}

ν∗(C) = max{y>1 : y>M ≤ 1, y ≥ 0}

α∗(C) = max{1>x : Mx ≤ 1, x ≥ 0}

κ∗(C) = min{y>1 : y>M ≥ 1, y ≥ 0}

Note that by LP duality, we have the following two equations:

ν(C) ≤ ν∗(C) = τ ∗(C) ≤ τ(C) (5)

κ(C) ≥ κ∗(C) = α∗(C) ≥ α(C) (6)

Also note that C packs if we have equalities in (5) and C covers if we have equalities in (6).
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Example: Let G be a graph and let C = IN(G) (the independence-node clutter of G).

Then we have

ω(G) = α(C) ≤ α∗(C) = κ∗(C) ≤ κ(C) = χ(G)

Here, the parameters α∗(C) and κ∗(C) are usually called the fractional clique number of G

and the fractional chromatic number of G.

General Objective Functions: For w ∈ ZV
+, we may extend the packing or covering system

to a linear program by using w as an objective function. As with w = 1, we rediscover our

weighted packing and covering parameters as follows.

τw = min{w>x : x ∈ ZV
+ and Mx ≥ 1}

νw = max{y>1 : y ∈ ZE
+ and y>M ≤ w}

αw = max{w>x : x ∈ ZV
+ and Mx ≤ 1}

κw = min{y>1 : y ∈ ZE
+ and y>M ≥ w}

As before, we shall drop these integrality constraints to define fractional parameters:

τ ∗w = min{w>x : x ∈ RV
+ and Mx ≥ 1}

ν∗w = max{y>1 : y ∈ RE
+ and y>M ≤ w}

α∗w = max{w>x : x ∈ RV
+ and Mx ≤ 1}

κ∗w = min{y>1 : y ∈ RE
+ and y>M ≥ w}

General Packing & Covering Inequalities:

νw ≤ ν∗w = τ ∗w ≤ τw

κw ≥ κ∗w = α∗w ≥ αw

Proposition 3.6 For every clutter C, we have that C satisfies

Ideal ⇔ τw = τ ∗w for all w ∈ ZV
+ ⇔ the packing system is integral

MFMC ⇔ τw = νw for all w ∈ ZV
+ ⇔ the packing system is TDI

Perfect ⇔ αw = α∗w for all w ∈ ZV
+ ⇔ the covering system is integral

Perfect+ ⇔ αw = κw for all w ∈ ZV
+ ⇔ the covering system is TDI

Proof: It follows immediately from the definition that C is ideal if and only if the packing

system is integral and this implies that τw = τ ∗w for all w ∈ ZV (not only for w ≥ 0).
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However, for every vertex x of the packing polyhedron, there exists w ∈ ZV
+ and λ ≥ 0

so that {x} = {y ∈ Pack(C) : w>y ≤ λ} and it follows from this that τw = τ ∗w for every

w ∈ ZV
+ implies that the packing polyhedron is integral (and thus that C is ideal). A similar

argument yields the equivalences involving perfect.

We have by definition that C is MFMC if and only if τw = νw for all w ∈ ZV
+. Let w ∈ ZV

and consider the linear programs given by ν∗w and τ ∗w. We find that either w ≥ 0 and both

programs are feasible, or w 6≥ 0 and ν∗w is infeasible and τ ∗w is unbounded. The remaining

equivalence follows easily from this. The proof of the equivalences involving Perfect+ is

somewhat similar. �

Corollary 3.7 For a clutter C, we have MFMC ⇒ Ideal, and Perfect+ ⇒ Perfect.

Note: We shall prove later that Perfect⇔ Perfect+, giving us the following Venn diagrams.

MFMC

Ideal Packs

Perfect

(=Perfect+)

Covers

Covering Packing


