4 Packing T-joins and T-cuts

Introduction

Graft: A graft consists of a connected graph $G=(V, E)$ with a distinguished subset $T \subseteq V$ where $|T|$ is even.

T-cut: A T-cut of G is an edge-cut C which separates T into two sets of odd size. We let $T C(G)$ denote the clutter of all minimal T-cuts.

T-join: A T-join of G is a subset $J \subseteq E$ with the property that $\{v \in V: v$ has odd degree in $(V, J)\}=$ T. We let $T J(G)$ denote the clutter of all minimal T-joins.

Observation 4.1 If $C \subseteq E$ is a T-cut and $J \subseteq E$ is a T-join, then $C \cap J \neq \emptyset$.
Proof: Suppose (for a contradiction) that $C \cap J=\emptyset$ and let $\{X, Y\}$ be the partition of V resulting from the edge cut C. Now, consider the subgraph H of (V, J) induced by X. The vertices of odd degree in H are precisely $X \cap T$, but this set has odd size, which is contradictory.

Observation 4.2

(i) A T-cut $C=\delta(X)$ is a minimal T-cut if and only if the graphs induced on X and $V \backslash X$ are connected.
(ii) A T-join $J \subseteq E$ is a minimal T-join if and only if the $\operatorname{graph}(V, J)$ is a forest.

Proof: Homework.
Proposition 4.3 $T J(G)$ and $T C(G)$ are blocking clutters for every graft G.
Proof: Homework.

Examples

1. If $T=\{s, t\}$, then the T-cuts are precisely the st-cuts, and the minimal T-joins are precisely the st-paths (check!).
2. If $T=V$, then the T-joins of size $\frac{1}{2}|V|$ are precisely the perfect matchings of G. So, for instance, if G is r-regular, then G is r-edge-colourable if and only if $\nu(T J(G))=r$ (check!).

Ideal for T-joins and T-cuts

Constraints: Let A be a matrix indexed by $R \times S$, let $b \in \mathbb{R}^{R}$ and let $P=\left\{x \in \mathbb{R}^{S}: A x \leq\right.$ $b\}$. Every $r \in R$ places the constraint on P that every point in P must have dot product with row r of A at most b_{r}. A point $x \in P$ is tight with respect to r if we have equality. We say that r uses $s \in S$ if $A_{r s} \neq 0$.

Proposition 4.4 If x is a vertex of the polyhedron P, then the following hold.
(i) If L is a line through x, then $P \cap L$ is a closed (possibly one-way infinite) interval of L with endpoint x.
(ii) If $S^{\prime} \subseteq S$, then there must be at least $\left|S^{\prime}\right|$ constraints which are tight with respect to x and use an element in $S^{\prime \prime}$.

Proof: Part (i) is an immediate consequence of the definition of vertex. For part (ii), suppose (for a contradiction) that $R^{\prime} \subseteq R$ is the set of tight constraints which use some $s \in S^{\prime}$ and that $\left|R^{\prime}\right|<\left|S^{\prime}\right|$. Then we may choose a nonzero vector $y \in \mathbb{R}^{S}$ supported on S^{\prime} which is orthogonal to the row of A indexed by r for every $r \in R^{\prime}$. Now the line through x in the direction of y contradicts (i).

Lemma 4.5 Let \tilde{x} be a vertex of the polyhedron

$$
P^{\prime}=\left\{x \in \mathbb{R}_{+}^{E}: x(\delta(v)) \geq 1 \text { for every } v \in T\right\}
$$

Let \tilde{G} be the subgraph of G induced by the edges $e \in E$ for which $\tilde{x}(e)>0$. Then every component of \tilde{G} is one of the following.
(i) an odd cycle with all vertices in T and all edges have $\tilde{x}(e)=\frac{1}{2}$
(ii) a star with all leaf vertices in T and all edges have $\tilde{x}(e)=1$.

Proof: Note that the constraints for the polyhedron P^{\prime} consist of $x(e) \geq 0$ for every $e \in E$ and $x(\delta(v)) \geq 1$ for every $v \in T$, so we index these constraints by $E \cup T$. Let H be a component of \tilde{G}, let Y be the vertex set of H, and let $S \subseteq E$ be the set of edges with both ends in Y. By applying (ii) of the previous proposition to S, we have

$$
\begin{equation*}
|\{e \in S: \tilde{x}(e)=0\}|+|\{v \in Y \cap T: \tilde{x}(\delta(v))=1\}| \geq|S| \tag{1}
\end{equation*}
$$

The next inequality follows by subtracting $|\{e \in S: \tilde{x}(e)=0\}|$ from both sides of (1).

$$
\begin{equation*}
|V(H)| \geq \mid\{v \in Y \cap T: \tilde{x}(\delta(v))=1|\geq|\{e \in S: \tilde{x}(e)>0\}|=|E(H)| . \tag{2}
\end{equation*}
$$

It follows from (2) that H has at most one cycle.
First consider the case that H contains a cycle. Then all inequalities in (2) must be equalities, so every vertex $v \in V(H)$ is in T and satisfies $\tilde{x}(\delta(v))=1$. If H consists of more than just a cycle, then H must have a leaf vertex v with leaf edge $u v$. Then we must have $\tilde{x}(u v)=1$ to satisfy the tight constraint at v, but then u cannot be incident with another edge with $\tilde{x}(e)>0-$ a contradiction. Thus, H must be a cycle. If H is an even cycle, let $y \in \mathbb{R}^{E}$ be the vector which is alternately +1 and -1 on edges of H, and 0 on all other edges. Now, for any $\epsilon<\min _{e \in E(H)} \tilde{x}(e)$, the point $\tilde{x}+\epsilon y$ is in P^{\prime}, but this contradicts (i) of the previous proposition. Thus, H must be an odd cycle. Now, if the edge $e \in E(H)$ has $\tilde{x}(e)=\alpha$ and f is an adjacent edge of H, then $\tilde{x}(f)=1-\alpha$. It follows easily from this that every edge e of H must have $\tilde{x}(e)=\frac{1}{2}$, thus (i) holds.

Next suppose that H is a tree. Now, by (2), all but one vertex of H is a vertex in T for which $\tilde{x}(\delta(v))=1$. In particular, there must be a leaf vertex v with leaf edge $u v$ for which $v \in T$ and $\tilde{x}(\delta(v))=1$. Then $\tilde{x}(u v)=1$ and either u is also a leaf vertex of H, so H is a one edge graph and we are finished, or u is not a leaf vertex and is the unique vertex of H for which the star constraint is not tight. In this latter case, it follows from the previous argument that every leaf vertex of H is a vertex of T which is adjacent to u and has leaf edge e with $\tilde{x}(e)=1$. Thus (ii) holds.

Theorem 4.6 (Edmonds-Johnson) The clutter $T C(G)$ is ideal.

Proof: Let $\mathcal{C}=T C(G)$ and define the polyhedra

$$
\begin{aligned}
P & =\operatorname{Pack}(\mathcal{C}) \\
P_{I} & =U p(b(\mathcal{C}))
\end{aligned}
$$

So, P is the set of edge weights which give every T-cut a total weight of ≥ 1 and P_{I} is the up-hull of the set of incidence vectors of minimal T-joins. Proving that \mathcal{C} is ideal is equivalent to showing that $P=P_{I}$, or equivalently that P is an integral polyhedron. This we shall prove by induction on $|V|$. Note that by construction, we have $P_{I} \subseteq P \subseteq P^{\prime}$ where P^{\prime} is the
polyhedron from Lemma 4.5. Next, let \tilde{x} be a vertex of P and let \tilde{G} be the subgraph of G induced by the edges e with $\tilde{x}(e)>0$.

First, suppose that \tilde{x} is also a vertex of P^{\prime} and consider a component H of the graph \tilde{G} with $Y=V(H)$. Since $\tilde{x}(\delta(Y))=0$, it must be that $|Y \cap T|$ is even (otherwise $\delta(Y)$ contains a T-cut, so \tilde{x} must give it weight ≥ 1). It now follows from the previous lemma that either H is a star with $\tilde{x}(e)=1$ for every edge in H, and either H has an odd number of leaves and center vertex in T or H has an even number of leaves and center not in T. Since this must hold for every component of \tilde{G}, we find that \tilde{x} is the incidence vector of a T-join, so in particular, \tilde{x} is integral.

Next, suppose that \tilde{x} is not a vertex of P^{\prime}. In this case, there must be a constraint of the polyhedron P which is tight for \tilde{x} but is not a constraint of the polyhedron P^{\prime}. That is, there must be a T-cut $C \subseteq E$ so that $\tilde{x}(C)=1$ and so that $C \neq \delta(v)$ for any $v \in V$. Let C partition the vertices into Y_{1} and Y_{2}, and for $i=1,2$ form a new graft G_{i} from G by identifying Y_{i} to a single new vertex, y_{i} and declaring this vertex to be in the distinguished subset. Let \tilde{x}_{i} be the edge weighting on G_{i} induced by \tilde{x}. Since every T-cut of G_{i} is also a T-cut of G we find (by induction) that \tilde{x} may be written as a convex combination of incidence vectors of T-joins in G_{i}. Since each of these T-joins must use exactly one edge of C they may be combined to give us a convex combination of incidence vectors of T-cuts of G which sum to \tilde{x}. This proves that \tilde{x} lies in P_{I} which completes our proof.

Corollary 4.7 The clutter $T J(G)$ is ideal.

Proof: Since $T J(G)$ and $T C(G)$ are blocking clutters, this follows immediately from Lehman's theorem.

MFMC for T-joins

Packing Parameters: We will focus on the clutter of T-joins in this section, so for a graft G, we let $\nu(G)=\nu(T J(G))$ and $\tau(G)=\tau(T J(G))$ (and similarly for ν_{w}, τ_{w}). As usual, when the graft is clear from context, we simplify the notation to ν and τ.

Odd $\mathbf{K}_{2,3}$: Any graft isomorphic to the one depicted below is called an odd $K_{2,3}$ (here filled in nodes are in T and empty ones are not).

Note that the clutter of T-joins of this graft is isomorphic to Q_{6}, so in particular, it has $\nu=1<2=\tau$.

Graft Minors: Let $G=(V, E)$ be a connected graft with distinguished subset $T \subseteq V$. To delete an edge e or a vertex $v \in V \backslash T$ we simply delete this from the graph. To contract an edge $e=u v$ we contract the edge in the graph to form a new vertex, say w and then we modify T by removing u, v and then adding w if and only if $|T \cap\{u, v\}|=1$. Any graft obtained from G by a sequence of such deletions and contractions is called a minor of G. It will be helpful at times to contract larger subgraphs; if $H \subseteq G$ is connected then to contract H we choose a spanning tree F of H, delete all edges in $E(H) \backslash E(F)$ and then contract the edges in F (Note that the resulting graft does not depend on the chosen tree).

Lemma 4.8 If $G=(V, E)$ is a minor minimal graft with $\nu(G)<\tau(G)$ then G is an odd $K_{2,3}$.

Proof: We shall establish the proof in steps. For any $F \subseteq E$ we let $\operatorname{odd}(F)=\{v \in V$: v has odd degree in $(V, F)\}$. We set $Y=\{v \in T: \operatorname{deg}(v)=\tau\}$.
(0) $T \Delta \operatorname{odd}(F)$ is even for every $F \subseteq E$.

Since $\operatorname{odd}(F)$ is the set of vertices of odd degree in the graph (V, F) it must have even size. Since T also has even size, it follows that $T \Delta \operatorname{odd}(F)$ is even.
(1) For every $e \in E$ we have $\tau-1 \geq \nu \geq \nu(G \backslash e)=\tau(G \backslash e) \geq \tau-1$.

The only nontrivial relation above is $\nu(G \backslash e)=\tau(G \backslash e)$ and this follows from the assumption that G is minor minimal with $\nu<\tau$.
(2) $\nu=\tau-1$

This is an immediate consequence of (1).
(3) Every edge is in a minimum size T-cut.

Were $e \in E$ not contained in a minimum size T-cut, we would have $\tau(G \backslash e)=\tau$ which contradicts (1).
(4) $|V \backslash Y| \geq 2$.

Choose edge-disjoint T-joins $J_{1}, J_{2}, \ldots, J_{\nu}$ and set $F=E \backslash\left(\cup_{i=1}^{\tau} J_{i}\right)$. Now, consider a vertex $v \in Y$. Since $\operatorname{deg}(v)=\tau=\nu+1$ and we have ν disjoint T-joins each of which contains an odd number of edges in $\delta(v)$, it must be that each J_{i} contains exactly one edge of $\delta(v)$, so F also contains one edge of $\delta(v)$. In particular $Y \subseteq \operatorname{odd}(F)$. If $\operatorname{odd}(F)=T$, then F is a T-join, giving us the contradiction $\nu=\tau$. Otherwise $\operatorname{odd}(F) \Delta T$ is even, and this implies (4).
(5) Every minimum size T-cut is of the form $\delta(v)$ for some $v \in Y$.

Suppose (for a contradiction) that there is a T-cut C of size τ which partitions V into $\left\{V_{1}, V_{2}\right\}$ where $\left|V_{1}\right|,\left|V_{2}\right| \geq 2$. Now, for $i=1,2$ we form a new graft G_{i} with distinguished vertex set T_{i} by identifying V_{i} to a single new vertex v_{i} (deleting any newly created loops), and setting T_{i} to be $\left(T \cap V\left(G_{i}\right)\right) \cup\left\{v_{i}\right\}$. Now, G_{i} has the T-cut $\delta\left(v_{i}\right)$ of size τ. Furthermore, every T-cut of G_{i} is also a T-cut of G (to see this, blow up the vertex v_{i} to V_{i} and return to the original graft). Thus, we must have $\tau\left(G_{i}\right)=\tau$. Since G_{i} is a proper minor of G we have $\nu\left(G_{i}\right)=\tau\left(G_{i}\right)=\tau$, so we may choose τ disjoint T-joins $J_{1}^{i}, \ldots, J_{\tau}^{i}$ of G_{i} for $i=1,2$. Since C is a T-cut of size τ in both G_{1} and G_{2}, every T-join J_{k}^{i} must contain exactly one edge of C, so we may assume by reordering that $J_{k}^{1} \cap C=J_{k}^{2} \cap C$ for every k. Now $J_{1}^{1} \cup J_{1}^{2}, \ldots J_{\tau}^{1} \cup J_{\tau}^{2}$ is a list of τ disjoint T-joins in G, giving us a contradiction and completing the proof of (5).
(6) G is 2 -connected.

If G is not connected, then by minimality, every component of G has ν disjoint T joins, so G does as well. Thus, G must be connected. If G is not 2-connected, then we may choose two nontrivial subgraphs $G_{1}, G_{2} \subseteq G$ so that $\left\{E\left(G_{1}\right), E\left(G_{2}\right)\right\}$ is a partition of $E(G)$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$. For $i=1,2$ we extend G_{i} to a graft by declaring the distinguished subset of vertices to be $\left(T \cap\left(V\left(G_{i}\right)\right) \backslash\{v\}\right.$ if this set is even, and $\left(T \cap V\left(G_{i}\right)\right) \cup\{v\}$ otherwise. It now follows that every T-cut of G_{i} is also a T-cut of G, so $\nu\left(G_{i}\right) \geq \nu$ and by minimality, we may choose T-joins $J_{1}^{1}, J_{2}^{1}, \ldots, J_{\nu}^{1}$ of G_{1} and $J_{1}^{2}, J_{2}^{2}, \ldots, J_{\nu}^{2}$ of G_{2}. Now $J_{1}^{1} \cup J_{1}^{2}, J_{2}^{1} \cup J_{2}^{2}, \ldots, J_{\nu}^{1} \cup J_{\nu}^{2}$ is a list of ν disjoint T-joins in G, giving us a contradiction.
(7) There does not exist a 2 vertex cut $\{u, v\}$ with $u \in Y$.

Suppose (for a contradiction) that (7) is false and choose subgraphs $H_{1}, H_{2} \subseteq G \backslash u$ so that $E\left(H_{1}\right) \cup E\left(H_{2}\right)=E(G \backslash u)$ and so that $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\{v\}$. Now for $i=1,2$ let G_{i} be the graft obtained from G by T-contracting G_{i}. Since every edge-cut of G_{i} is also
an edge-cut of G we have that $\tau\left(G_{i}\right) \geq \tau$ so by induction we may choose τ disjoint T-joins $F_{1}^{i}, F_{2}^{i}, \ldots, F_{\tau}^{i}$ of G_{i} for $i=1,2$. Since the vertex $u \in Y$ every F_{j}^{i} contains exactly one edge of $\delta(u)$ and by reordering, we may assume that $F_{j}^{1} \cap \delta(u)=F_{j}^{2} \cap \delta(u)$ for every $1 \leq j \leq \tau$. Now let $F_{j}=F_{j}^{1} \cup F_{j}^{2}$ for $1 \leq j \leq \tau$. For every vertex $w \in V(G) \backslash\{v\}$ we have that $w \in \operatorname{odd}\left(F_{j}\right)$ if and only if $w \in T$. But then it follows from (0) that $\operatorname{odd}\left(F_{j}\right)=T$. Thus we have found τ disjoint T-joins giving us a contradiction.

With (0)-(7) we are now ready to complete the proof. By (4) we may choose two vertices $x_{1}, x_{2} \in V(G) \backslash Y$ of minimum distance (note that x_{1}, x_{2} cannot be adjacent by (3) and (5)). If there do not exist three internally disjoint paths from x_{1} to x_{2}, then there is a one or two vertex separation of the graph with x_{1} on one side and x_{2} on the other. But then (7) shows that every vertex in this separation is in $V(G) \backslash Y$ and then a shortest path from x_{1} to x_{2} must contain another vertex of $V(G) \backslash Y$ which contradicts our choice of x_{1}, x_{2}. It follows from this that we may choose three internally disjoint paths, say $P_{1,2}, P_{3}$ from x_{1} to x_{2}. For $i=1,2,3$ let y_{i} be the neighbour of x_{1} on P_{i} and note that $y_{i} \in Y$ by (3) and (5). We now split into two cases:

Case 1: $G \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$ is not connected.
Let $H_{1}, H_{2}, \ldots, H_{k}$ be the components of $G \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$ and assume that H_{1}, \ldots, H_{j} are the components which contain an odd number of vertices in T. Note that by parity we must have j odd. First suppose that $j \geq 3$. Then every $\delta\left(H_{i}\right)$ for $1 \leq i \leq j$ is a T-cut, these T-cuts are all disjoint, and their union is contained in $\delta\left(y_{1}\right) \cup \delta\left(y_{2}\right) \cup \delta\left(y_{3}\right)$. This is only possible if $j=3$ and each of $\delta\left(H_{i}\right)$ for $1 \leq i \leq 3$ is a minimum size T-cut and $\cup_{i=1}^{3} \delta\left(H_{i}\right)=\cup_{i=1}^{3} \delta\left(y_{i}\right)$. But then by (5) we must have that each of H_{1}, H_{2}, H_{3} contains just a single point in Y and since there is a vertex of Y somewhere in the graph we must have $k>3$, but then we have a contradiction to connectivity. Thus we must have $j=1$ and (since $\left\{y_{1}, y_{2}, y_{3}\right\}$ is connected) $k \geq 2$. Now contract every H_{i} to a single point and delete those newly created points for $i \geq 3$. The resulting graft is an odd $K_{2,3}$.

Case 2: $G \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$ is connected.
Let H_{1} be the subgraph consisting of the single vertex x_{1} and let H_{2} be the subgraph consisting of $P_{1} \cup P_{2} \cup P_{3} \backslash\left\{y_{1}, y_{2}, y_{3}, x_{1}\right\}$. It follows from the connectivity of $G \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$ that we may extend H_{1}, H_{2} so connected subgraphs $H_{1}^{\prime}, H_{2}^{\prime}$ so that $\left\{V\left(H_{1}\right), V\left(H_{2}\right)\right\}$ is a
partition of $V(G) \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$. Now contract H_{1} and H_{2} to a single vertex. It follows from parity that exactly one of H_{1} or H_{2} has an odd number of vertices in T, so the resulting graft is isomorphic to an odd $K_{2,3}$. This completes the proof.

Theorem 4.9 If \mathcal{C} is a clutter of T-joins, then \mathcal{C} is MFMC if and only if \mathcal{C} has no Q_{6} minor.

Proof: If \mathcal{C} has Q_{6} as a minor then assigning each edge which was deleted in this minor creation a weight of 0 and each edge which was contracted a weight of ∞ and each remaining edge a weight of 1 results in a weighting for which $\nu=1$ and $\tau=2$. If \mathcal{C} has no Q_{6} minor, then choose a graft $G=(V, E)$ so that $\mathcal{C}=T J(G)$, and let $w \in \mathbb{Z}_{+}^{E}$. Next, modify G to form a new graft G^{\prime} by replacing every edge e with $w(e)$ copies of e. Now, G^{\prime} has no odd $K_{2,3}$ minor (otherwise G would have an odd $K_{2,3}$ minor), so by the lemma we have $\nu_{w}(G)=\nu\left(G^{\prime}\right)=\tau\left(G^{\prime}\right)=\tau_{w}(G)$. Since w was arbitrary, \mathcal{C} has the MFMC property.

