
4 Packing T-joins and T-cuts

Introduction

Graft: A graft consists of a connected graph G = (V,E) with a distinguished subset T ⊆ V

where |T | is even.

T-cut: A T -cut of G is an edge-cut C which separates T into two sets of odd size. We let

TC(G) denote the clutter of all minimal T -cuts.

T-join: A T -join ofG is a subset J ⊆ E with the property that {v ∈ V : v has odd degree in (V, J)} =

T . We let TJ(G) denote the clutter of all minimal T -joins.

Observation 4.1 If C ⊆ E is a T -cut and J ⊆ E is a T -join, then C ∩ J 6= ∅.

Proof: Suppose (for a contradiction) that C ∩ J = ∅ and let {X, Y } be the partition of

V resulting from the edge cut C. Now, consider the subgraph H of (V, J) induced by X.

The vertices of odd degree in H are precisely X ∩ T , but this set has odd size, which is

contradictory. �

Observation 4.2

(i) A T -cut C = δ(X) is a minimal T -cut if and only if the graphs induced on X and

V \X are connected.

(ii) A T -join J ⊆ E is a minimal T -join if and only if the graph (V, J) is a forest.

Proof: Homework.

Proposition 4.3 TJ(G) and TC(G) are blocking clutters for every graft G.

Proof: Homework.

Examples

1. If T = {s, t}, then the T -cuts are precisely the st-cuts, and the minimal T -joins are

precisely the st-paths (check!).

2. If T = V , then the T -joins of size 1
2
|V | are precisely the perfect matchings of G. So,

for instance, if G is r-regular, then G is r-edge-colourable if and only if ν(TJ(G)) = r

(check!).
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Ideal for T-joins and T-cuts

Constraints: Let A be a matrix indexed by R×S, let b ∈ RR and let P = {x ∈ RS : Ax ≤
b}. Every r ∈ R places the constraint on P that every point in P must have dot product

with row r of A at most br. A point x ∈ P is tight with respect to r if we have equality. We

say that r uses s ∈ S if Ars 6= 0.

Proposition 4.4 If x is a vertex of the polyhedron P , then the following hold.

(i) If L is a line through x, then P ∩ L is a closed (possibly one-way infinite) interval of

L with endpoint x.

(ii) If S ′ ⊆ S, then there must be at least |S ′| constraints which are tight with respect to x

and use an element in S ′.

Proof: Part (i) is an immediate consequence of the definition of vertex. For part (ii), suppose

(for a contradiction) that R′ ⊆ R is the set of tight constraints which use some s ∈ S ′ and

that |R′| < |S ′|. Then we may choose a nonzero vector y ∈ RS supported on S ′ which is

orthogonal to the row of A indexed by r for every r ∈ R′. Now the line through x in the

direction of y contradicts (i). �

Lemma 4.5 Let x̃ be a vertex of the polyhedron

P ′ = {x ∈ RE
+ : x(δ(v)) ≥ 1 for every v ∈ T}.

Let G̃ be the subgraph of G induced by the edges e ∈ E for which x̃(e) > 0. Then every

component of G̃ is one of the following.

(i) an odd cycle with all vertices in T and all edges have x̃(e) = 1
2

(ii) a star with all leaf vertices in T and all edges have x̃(e) = 1.

Proof: Note that the constraints for the polyhedron P ′ consist of x(e) ≥ 0 for every e ∈ E
and x(δ(v)) ≥ 1 for every v ∈ T , so we index these constraints by E ∪ T . Let H be a

component of G̃, let Y be the vertex set of H, and let S ⊆ E be the set of edges with both

ends in Y . By applying (ii) of the previous proposition to S, we have

|{e ∈ S : x̃(e) = 0}|+ |{v ∈ Y ∩ T : x̃(δ(v)) = 1}| ≥ |S|. (1)
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The next inequality follows by subtracting |{e ∈ S : x̃(e) = 0}| from both sides of (1).

|V (H)| ≥ |{v ∈ Y ∩ T : x̃(δ(v)) = 1| ≥ |{e ∈ S : x̃(e) > 0}| = |E(H)|. (2)

It follows from (2) that H has at most one cycle.

First consider the case that H contains a cycle. Then all inequalities in (2) must be

equalities, so every vertex v ∈ V (H) is in T and satisfies x̃(δ(v)) = 1. If H consists of more

than just a cycle, then H must have a leaf vertex v with leaf edge uv. Then we must have

x̃(uv) = 1 to satisfy the tight constraint at v, but then u cannot be incident with another

edge with x̃(e) > 0 - a contradiction. Thus, H must be a cycle. If H is an even cycle, let

y ∈ RE be the vector which is alternately +1 and −1 on edges of H, and 0 on all other

edges. Now, for any ε < mine∈E(H) x̃(e), the point x̃+ εy is in P ′, but this contradicts (i) of

the previous proposition. Thus, H must be an odd cycle. Now, if the edge e ∈ E(H) has

x̃(e) = α and f is an adjacent edge of H, then x̃(f) = 1− α. It follows easily from this that

every edge e of H must have x̃(e) = 1
2
, thus (i) holds.

Next suppose that H is a tree. Now, by (2), all but one vertex of H is a vertex in T for

which x̃(δ(v)) = 1. In particular, there must be a leaf vertex v with leaf edge uv for which

v ∈ T and x̃(δ(v)) = 1. Then x̃(uv) = 1 and either u is also a leaf vertex of H, so H is a

one edge graph and we are finished, or u is not a leaf vertex and is the unique vertex of H

for which the star constraint is not tight. In this latter case, it follows from the previous

argument that every leaf vertex of H is a vertex of T which is adjacent to u and has leaf

edge e with x̃(e) = 1. Thus (ii) holds. �

Theorem 4.6 (Edmonds-Johnson) The clutter TC(G) is ideal.

Proof: Let C = TC(G) and define the polyhedra

P = Pack(C)

PI = Up(b(C))

So, P is the set of edge weights which give every T -cut a total weight of ≥ 1 and PI is the

up-hull of the set of incidence vectors of minimal T -joins. Proving that C is ideal is equivalent

to showing that P = PI , or equivalently that P is an integral polyhedron. This we shall

prove by induction on |V |. Note that by construction, we have PI ⊆ P ⊆ P ′ where P ′ is the
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polyhedron from Lemma 4.5. Next, let x̃ be a vertex of P and let G̃ be the subgraph of G

induced by the edges e with x̃(e) > 0.

First, suppose that x̃ is also a vertex of P ′ and consider a component H of the graph G̃

with Y = V (H). Since x̃(δ(Y )) = 0, it must be that |Y ∩T | is even (otherwise δ(Y ) contains

a T -cut, so x̃ must give it weight ≥ 1). It now follows from the previous lemma that either

H is a star with x̃(e) = 1 for every edge in H, and either H has an odd number of leaves

and center vertex in T or H has an even number of leaves and center not in T . Since this

must hold for every component of G̃, we find that x̃ is the incidence vector of a T -join, so in

particular, x̃ is integral.

Next, suppose that x̃ is not a vertex of P ′. In this case, there must be a constraint of

the polyhedron P which is tight for x̃ but is not a constraint of the polyhedron P ′. That

is, there must be a T -cut C ⊆ E so that x̃(C) = 1 and so that C 6= δ(v) for any v ∈ V .

Let C partition the vertices into Y1 and Y2, and for i = 1, 2 form a new graft Gi from G by

identifying Yi to a single new vertex, yi and declaring this vertex to be in the distinguished

subset. Let x̃i be the edge weighting on Gi induced by x̃. Since every T -cut of Gi is also

a T -cut of G we find (by induction) that x̃ may be written as a convex combination of

incidence vectors of T -joins in Gi. Since each of these T -joins must use exactly one edge of

C they may be combined to give us a convex combination of incidence vectors of T -cuts of

G which sum to x̃. This proves that x̃ lies in PI which completes our proof. �

Corollary 4.7 The clutter TJ(G) is ideal.

Proof: Since TJ(G) and TC(G) are blocking clutters, this follows immediately from Lehman’s

theorem. �

MFMC for T-joins

Packing Parameters: We will focus on the clutter of T -joins in this section, so for a graft

G, we let ν(G) = ν(TJ(G)) and τ(G) = τ(TJ(G)) (and similarly for νw, τw). As usual, when

the graft is clear from context, we simplify the notation to ν and τ .

Odd K2,3: Any graft isomorphic to the one depicted below is called an odd K2,3 (here filled

in nodes are in T and empty ones are not).
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Note that the clutter of T -joins of this graft is isomorphic to Q6, so in particular, it has

ν = 1 < 2 = τ .

Graft Minors: Let G = (V,E) be a connected graft with distinguished subset T ⊆ V . To

delete an edge e or a vertex v ∈ V \ T we simply delete this from the graph. To contract

an edge e = uv we contract the edge in the graph to form a new vertex, say w and then

we modify T by removing u, v and then adding w if and only if |T ∩ {u, v}| = 1. Any graft

obtained from G by a sequence of such deletions and contractions is called a minor of G. It

will be helpful at times to contract larger subgraphs; if H ⊆ G is connected then to contract

H we choose a spanning tree F of H, delete all edges in E(H) \E(F ) and then contract the

edges in F (Note that the resulting graft does not depend on the chosen tree).

Lemma 4.8 If G = (V,E) is a minor minimal graft with ν(G) < τ(G) then G is an odd

K2,3.

Proof: We shall establish the proof in steps. For any F ⊆ E we let odd(F ) = {v ∈ V :

v has odd degree in (V, F )}. We set Y = {v ∈ T : deg(v) = τ}.

(0) T∆odd(F ) is even for every F ⊆ E.

Since odd(F ) is the set of vertices of odd degree in the graph (V, F ) it must have even

size. Since T also has even size, it follows that T∆odd(F ) is even.

(1) For every e ∈ E we have τ − 1 ≥ ν ≥ ν(G \ e) = τ(G \ e) ≥ τ − 1.

The only nontrivial relation above is ν(G \ e) = τ(G \ e) and this follows from the

assumption that G is minor minimal with ν < τ .

(2) ν = τ − 1

This is an immediate consequence of (1).

(3) Every edge is in a minimum size T -cut.

Were e ∈ E not contained in a minimum size T -cut, we would have τ(G \ e) = τ which

contradicts (1).

(4) |V \ Y | ≥ 2.
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Choose edge-disjoint T -joins J1, J2, . . . , Jν and set F = E \ (∪τi=1Ji). Now, consider a

vertex v ∈ Y . Since deg(v) = τ = ν+1 and we have ν disjoint T -joins each of which contains

an odd number of edges in δ(v), it must be that each Ji contains exactly one edge of δ(v),

so F also contains one edge of δ(v). In particular Y ⊆ odd(F ). If odd(F ) = T , then F is

a T -join, giving us the contradiction ν = τ . Otherwise odd(F )∆T is even, and this implies

(4).

(5) Every minimum size T -cut is of the form δ(v) for some v ∈ Y .

Suppose (for a contradiction) that there is a T -cut C of size τ which partitions V into

{V1, V2} where |V1|, |V2| ≥ 2. Now, for i = 1, 2 we form a new graft Gi with distinguished

vertex set Ti by identifying Vi to a single new vertex vi (deleting any newly created loops),

and setting Ti to be (T ∩V (Gi))∪{vi}. Now, Gi has the T -cut δ(vi) of size τ . Furthermore,

every T -cut of Gi is also a T -cut of G (to see this, blow up the vertex vi to Vi and return to

the original graft). Thus, we must have τ(Gi) = τ . Since Gi is a proper minor of G we have

ν(Gi) = τ(Gi) = τ , so we may choose τ disjoint T -joins J i1, . . . , J
i
τ of Gi for i = 1, 2. Since C

is a T -cut of size τ in both G1 and G2, every T -join J ik must contain exactly one edge of C,

so we may assume by reordering that J1
k ∩C = J2

k ∩C for every k. Now J1
1 ∪ J2

1 , . . . J
1
τ ∪ J2

τ

is a list of τ disjoint T -joins in G, giving us a contradiction and completing the proof of (5).

(6) G is 2-connected.

If G is not connected, then by minimality, every component of G has ν disjoint T -

joins, so G does as well. Thus, G must be connected. If G is not 2-connected, then we

may choose two nontrivial subgraphs G1, G2 ⊆ G so that {E(G1), E(G2)} is a partition

of E(G) and V (G1) ∩ V (G2) = {v}. For i = 1, 2 we extend Gi to a graft by declaring the

distinguished subset of vertices to be (T∩(V (Gi))\{v} if this set is even, and (T∩V (Gi))∪{v}
otherwise. It now follows that every T -cut of Gi is also a T -cut of G, so ν(Gi) ≥ ν and

by minimality, we may choose T -joins J1
1 , J

1
2 , . . . , J

1
ν of G1 and J2

1 , J
2
2 , . . . , J

2
ν of G2. Now

J1
1 ∪ J2

1 , J
1
2 ∪ J2

2 , . . . , J
1
ν ∪ J2

ν is a list of ν disjoint T -joins in G, giving us a contradiction.

(7) There does not exist a 2 vertex cut {u, v} with u ∈ Y .

Suppose (for a contradiction) that (7) is false and choose subgraphs H1, H2 ⊆ G \ u so

that E(H1) ∪ E(H2) = E(G \ u) and so that V (H1) ∩ V (H2) = {v}. Now for i = 1, 2 let

Gi be the graft obtained from G by T -contracting Gi. Since every edge-cut of Gi is also
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an edge-cut of G we have that τ(Gi) ≥ τ so by induction we may choose τ disjoint T -joins

F i
1, F

i
2, . . . , F

i
τ of Gi for i = 1, 2. Since the vertex u ∈ Y every F i

j contains exactly one edge of

δ(u) and by reordering, we may assume that F 1
j ∩δ(u) = F 2

j ∩δ(u) for every 1 ≤ j ≤ τ . Now

let Fj = F 1
j ∪ F 2

j for 1 ≤ j ≤ τ . For every vertex w ∈ V (G) \ {v} we have that w ∈ odd(Fj)

if and only if w ∈ T . But then it follows from (0) that odd(Fj) = T . Thus we have found τ

disjoint T -joins giving us a contradiction.

With (0)-(7) we are now ready to complete the proof. By (4) we may choose two vertices

x1, x2 ∈ V (G)\Y of minimum distance (note that x1, x2 cannot be adjacent by (3) and (5)).

If there do not exist three internally disjoint paths from x1 to x2, then there is a one or two

vertex separation of the graph with x1 on one side and x2 on the other. But then (7) shows

that every vertex in this separation is in V (G) \ Y and then a shortest path from x1 to x2

must contain another vertex of V (G) \ Y which contradicts our choice of x1, x2. It follows

from this that we may choose three internally disjoint paths, say P1,2 , P3 from x1 to x2. For

i = 1, 2, 3 let yi be the neighbour of x1 on Pi and note that yi ∈ Y by (3) and (5). We now

split into two cases:

Case 1: G \ {y1, y2, y3} is not connected.

Let H1, H2, . . . , Hk be the components of G \ {y1, y2, y3} and assume that H1, . . . , Hj are

the components which contain an odd number of vertices in T . Note that by parity we must

have j odd. First suppose that j ≥ 3. Then every δ(Hi) for 1 ≤ i ≤ j is a T -cut, these T -cuts

are all disjoint, and their union is contained in δ(y1) ∪ δ(y2) ∪ δ(y3). This is only possible if

j = 3 and each of δ(Hi) for 1 ≤ i ≤ 3 is a minimum size T -cut and ∪3
i=1δ(Hi) = ∪3

i=1δ(yi).

But then by (5) we must have that each of H1, H2, H3 contains just a single point in Y and

since there is a vertex of Y somewhere in the graph we must have k > 3, but then we have a

contradiction to connectivity. Thus we must have j = 1 and (since {y1, y2, y3} is connected)

k ≥ 2. Now contract every Hi to a single point and delete those newly created points for

i ≥ 3. The resulting graft is an odd K2,3.

Case 2: G \ {y1, y2, y3} is connected.

Let H1 be the subgraph consisting of the single vertex x1 and let H2 be the subgraph

consisting of P1 ∪P2 ∪P3 \ {y1, y2, y3, x1}. It follows from the connectivity of G \ {y1, y2, y3}
that we may extend H1, H2 so connected subgraphs H ′

1, H
′
2 so that {V (H1), V (H2)} is a
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partition of V (G) \ {y1, y2, y3}. Now contract H1 and H2 to a single vertex. It follows from

parity that exactly one of H1 or H2 has an odd number of vertices in T , so the resulting

graft is isomorphic to an odd K2,3. This completes the proof. �

Theorem 4.9 If C is a clutter of T -joins, then C is MFMC if and only if C has no Q6

minor.

Proof: If C has Q6 as a minor then assigning each edge which was deleted in this minor

creation a weight of 0 and each edge which was contracted a weight of∞ and each remaining

edge a weight of 1 results in a weighting for which ν = 1 and τ = 2. If C has no Q6 minor,

then choose a graft G = (V,E) so that C = TJ(G), and let w ∈ ZE
+. Next, modify G

to form a new graft G′ by replacing every edge e with w(e) copies of e. Now, G′ has no

odd K2,3 minor (otherwise G would have an odd K2,3 minor), so by the lemma we have

νw(G) = ν(G′) = τ(G′) = τw(G). Since w was arbitrary, C has the MFMC property. �


