5 Perfect Graphs

Independent set polytopes: For every graph $G=(V, E)$ we define the polytopes (check the equivalences!)

$$
\begin{aligned}
P(G) & =\operatorname{Cov}(C N(G)) \\
& =\left\{x \in \mathbb{R}_{+}^{V}: x(K) \leq 1 \text { for every clique } K\right\} \\
P_{I}(G) & =\operatorname{Down}(a(C N(G))) \\
& =\left\{x \in \mathbb{R}_{+}^{V}: x \text { is a convex combination of incidence vectors of independent sets }\right\} .
\end{aligned}
$$

This give us

$$
\begin{equation*}
C N(G) \text { is perfect } \Leftrightarrow P(G) \text { is integral } \Leftrightarrow P(G)=P_{I}(G) \tag{1}
\end{equation*}
$$

Observation 5.1 If $P(G)$ is integral and $X \subseteq V(G)$, then $P(G \backslash X)$ is integral.

Proof: It suffices to show that $P(G \backslash v)$ is integral for an arbitrary vertex $v \in V(G)$. To see this, note that $P(G \backslash v)$ is precisely the intersection of $P(G)$ with the hyperplane $\left\{x \in \mathbb{R}^{V}: x(v)=0\right\}$. Since $x(v) \geq 0$ is a constraint of $P(G)$, it follows that $P(G \backslash v)$ is a face of $P(G)$. It is an immediate consequence of this that $P(G \backslash v)$ is integral.

Perfect Graphs: We say that a graph G is perfect if $\omega(G \backslash X)=\chi(G \backslash X)$ for every $X \subseteq V(G)$. Note that if G is perfect, then $G \backslash Y$ is perfect for every $Y \subseteq V(G)$.

Replication: Let G be a graph and let $v \in V(G)$. To replicate v, we add a new vertex v^{\prime} to the graph add an edge between v^{\prime} and every neighbor of v and then add an edge between v^{\prime} and v.

Lemma 5.2 (Lovasz Replication) If $G=(V, E)$ is a perfect graph and G^{\prime} is obtained from G by replicating the vertex v, then G^{\prime} is perfect.

Proof: It is sufficient to show that $\chi\left(G^{\prime}\right)=\omega\left(G^{\prime}\right)$ since, for an induced subgraph, a similar argument works. In fact, $\chi\left(G^{\prime}\right) \geq \omega\left(G^{\prime}\right)$ trivially, so it suffices to prove $\chi\left(G^{\prime}\right) \leq \omega\left(G^{\prime}\right)$. If v is contained in a maximum clique of G, then we have $\omega\left(G^{\prime}\right)=\omega(G)+1=\chi(G)+1 \geq \chi\left(G^{\prime}\right)$. Thus, we may now assume that v is not contained in a maximum clique of G. Next, let $\omega=\omega(G)$, choose a colouring of G with colour classes $A_{1}, A_{2}, \ldots, A_{\omega}$, and assume that
$v \in A_{\omega}$. Since the graph $G \backslash\left(A_{\omega} \backslash\{v\}\right)$ is a perfect graph which has no clique of size ω (why!), we may choose a colouring of this graph with colour classes $B_{1}, B_{2}, \ldots, B_{\omega-1}$. Now, $B_{1}, B_{2}, \ldots, B_{\omega-1}, A_{\omega}$ is a list of independent sets in G which use v twice, and every other vertex once. By replacing one occurence of v with v^{\prime}, we get a colouring of G^{\prime} with ω colours. Thus $\chi\left(G^{\prime}\right) \leq \omega=\omega\left(G^{\prime}\right)$ and we are finished.

Lovasz Weightings: If $w \in \mathbb{Z}_{+}^{V}$, we let G_{w} be the graph obtained from G by deleting every vertex v with $w(v)=0$ and replicating each vertex v with $w(v)>0$ exactly $w(v)-1$ times (note that the resulting graph does not depend on the order of operations).

Lemma 5.3 If G is perfect and $w \in \mathbb{Z}_{+}^{V}$, then G_{w} is perfect.

Proof: Since G_{w} is obtained from G by a sequence of vertex deletions and vertex replications, this follows from the previous lemma.

Theorem 5.4 (Lovasz's Perfect Graph Theorem) For every graph $G=(V, E)$, the following are equivalent.
(i) G is perfect.
(ii) $\quad P(G)$ is integral.
(iii) \bar{G} is perfect.

Proof: It suffices to show (i) \Rightarrow (ii) \Rightarrow (iii), since $\overline{\bar{G}}=G$ then yields (iii) \Rightarrow (i).
(i) \Rightarrow (ii): To prove (ii), we shall show that $P(G)=P_{I}(G)$. Let $x \in P(G) \cap \mathbb{Q}^{V}$. Now it suffices to show $x \in P_{I}$. Choose a positive integer N so that $w=N x \in \mathbb{Z}^{V}$, and consider the graph G_{w}. For every $i \in V$, let Y_{i} be the set of vertices in G_{w} which are equal to i or obtained by replicating i and let $\pi: V\left(G_{w}\right) \rightarrow V$ be given by the rule that $\pi(u)=i$ if $u \in Y_{i}$. Let \tilde{K} be a maximum size clique in G_{w} and let $K=\pi(\tilde{K})$. Then, K is a clique of G and further,

$$
\omega\left(G_{w}\right)=|\tilde{K}| \leq \sum_{i \in K}\left|Y_{i}\right|=w(K)=N x(K) \leq N
$$

(here the last inequality follows from $x \in P(G)$). Since G_{w} is perfect, we may choose a colouring of it with colour classes $A_{1}, A_{2}, \ldots, A_{N}$. Now, consider $\pi\left(A_{1}\right), \pi\left(A_{2}\right), \ldots, \pi\left(A_{N}\right)$.

This is a list of independent sets in G which use every vertex $i \in V$ exactly $w(i)$ times. It follows from this that $x=\frac{1}{N} w=\frac{1}{N} \sum_{\ell=1}^{N} \iota_{\pi\left(A_{\ell}\right)}$ so $x \in P_{I}$ as desired.
(ii) \Rightarrow (iii): It follows from Observation 5.1 that property (ii) holds for any subgraph obtained from G by deleting vertices. In light of this, it suffices to prove $\chi(\bar{G})=\omega(\bar{G})$. We shall prove this by induction on $|V|$. As a base, observe that the result holds for the trivial graph. Let $\alpha=\alpha(G)$ be the size of the largest independent set in G. Since $P(G)$ is integral (i.e. $P(G)=P_{I}(G)$), every vertex of $P(G)$ is the incidence vector of an independent set. It follows from this that $F=P(G) \cap\left\{x \in \mathbb{R}^{V}: x^{\top} 1=\alpha\right\}$ is a face of $P(G)$. Consider a generic point x in the face F. There must be a constraint of the form $x(K) \leq 1$ which is tight for x (otherwise, the only tight constraints are nonnegativity constraints, and we could freely increase any positive coordinate of x while staying in $P(G)$ - which is contradictory). Now the constraint $x(K) \leq 1$ must be tight for every point in F, and it follows that the clique K has nonempty intersection with every independent set of G of size α. This gives us $\alpha(G \backslash K)=\alpha(G)-1$ or equivalently, $\omega(\bar{G} \backslash K)=\omega(\bar{G})-1$. By induction, we may choose a colouring of $\bar{G} \backslash K$ using $\omega(\bar{G})-1$ colours. Adding the set K (which is independent in \bar{G}) to this, gives us a colouring of \bar{G} using $\omega(\bar{G})$ colours, thus completing the proof.

Lemma 5.5 If G is a perfect graph, then $C N(G)$ is a perfect ${ }^{+}$clutter.
Proof: Let $G=(V, E)$, let $\mathcal{C}=C N(G)$, and let $w \in \mathbb{Z}_{+}^{V}$. To prove that \mathcal{C} is perfect ${ }^{+}$, it suffices to show that $\kappa_{w}(\mathcal{C})=\alpha_{w}(\mathcal{C})$. It follows from Theorem 5.4 that \bar{G} is perfect, and then by Lemma 5.3 that $(\bar{G})_{w}$ is perfect. Thus we have

$$
\kappa_{w}(\mathcal{C})=\chi\left((\bar{G})_{w}\right)=\omega\left((\bar{G})_{w}\right)=\alpha_{w}(\mathcal{C})
$$

which completes the proof.
Theorem 5.6 (Lovasz) The following are equivalent for a clutter \mathcal{C}.
(i) \mathcal{C} is perfect.
(ii) \mathcal{C} is perfect ${ }^{+}$.
(iii) $\mathcal{C}=C N(G)$ for a perfect graph G.

Proof: We shall show (i) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i). For (i) \Rightarrow (ii), note that by Theorem 2.15, \mathcal{C} perfect implies that $\mathcal{C}=C N(G)$ for a graph G. Since $P(G)$ is precisely the covering polyhedron of \mathcal{C}, it follows that $P(G)$ must be integral, and then by Theorem 5.4 that G is perfect. The previous lemma immediately yields (iii) \Rightarrow (ii). Finally, (ii) \Rightarrow (i) is given by Corollary 3.7.

Theorem 5.7 (Chudnovsky, Robertson, Seymour, Thomas) A graph G is perfect if and only if G has no induced subgraph isomorphic to an odd cycle of length ≥ 5 or the complement of such a graph.

Note: This famous theorem (usually called the Strong Perfect Graph Theorem) gives us a precise (and very useful) characterization of exactly which clutters are perfect.

