5 Perfect Graphs

Independent set polytopes: For every graph G = (V, E) we define the polytopes (check the equivalences!)

$$P(G) = Cov(CN(G))$$

= { $x \in \mathbb{R}^V_+$: $x(K) \le 1$ for every clique K}
 $P_I(G) = Down(a(CN(G)))$
= { $x \in \mathbb{R}^V_+$: x is a convex combination of incidence vectors of independent sets}.

This give us

CN(G) is perfect $\Leftrightarrow P(G)$ is integral $\Leftrightarrow P(G) = P_I(G)$ (1)

Observation 5.1 If P(G) is integral and $X \subseteq V(G)$, then $P(G \setminus X)$ is integral.

Proof: It suffices to show that $P(G \setminus v)$ is integral for an arbitrary vertex $v \in V(G)$. To see this, note that $P(G \setminus v)$ is precisely the intersection of P(G) with the hyperplane $\{x \in \mathbb{R}^V : x(v) = 0\}$. Since $x(v) \ge 0$ is a constraint of P(G), it follows that $P(G \setminus v)$ is a face of P(G). It is an immediate consequence of this that $P(G \setminus v)$ is integral. \Box

Perfect Graphs: We say that a graph G is perfect if $\omega(G \setminus X) = \chi(G \setminus X)$ for every $X \subseteq V(G)$. Note that if G is perfect, then $G \setminus Y$ is perfect for every $Y \subseteq V(G)$.

Replication: Let G be a graph and let $v \in V(G)$. To replicate v, we add a new vertex v' to the graph add an edge between v' and every neighbor of v and then add an edge between v' and v.

Lemma 5.2 (Lovasz Replication) If G = (V, E) is a perfect graph and G' is obtained from G by replicating the vertex v, then G' is perfect.

Proof: It is sufficient to show that $\chi(G') = \omega(G')$ since, for an induced subgraph, a similar argument works. In fact, $\chi(G') \ge \omega(G')$ trivially, so it suffices to prove $\chi(G') \le \omega(G')$. If vis contained in a maximum clique of G, then we have $\omega(G') = \omega(G) + 1 = \chi(G) + 1 \ge \chi(G')$. Thus, we may now assume that v is not contained in a maximum clique of G. Next, let $\omega = \omega(G)$, choose a colouring of G with colour classes $A_1, A_2, \ldots, A_{\omega}$, and assume that $v \in A_{\omega}$. Since the graph $G \setminus (A_{\omega} \setminus \{v\})$ is a perfect graph which has no clique of size ω (why!), we may choose a colouring of this graph with colour classes $B_1, B_2, \ldots, B_{\omega-1}$. Now, $B_1, B_2, \ldots, B_{\omega-1}, A_{\omega}$ is a list of independent sets in G which use v twice, and every other vertex once. By replacing one occurence of v with v', we get a colouring of G' with ω colours. Thus $\chi(G') \leq \omega = \omega(G')$ and we are finished. \Box

Lovasz Weightings: If $w \in \mathbb{Z}_+^V$, we let G_w be the graph obtained from G by deleting every vertex v with w(v) = 0 and replicating each vertex v with w(v) > 0 exactly w(v) - 1 times (note that the resulting graph does not depend on the order of operations).

Lemma 5.3 If G is perfect and $w \in \mathbb{Z}_+^V$, then G_w is perfect.

Proof: Since G_w is obtained from G by a sequence of vertex deletions and vertex replications, this follows from the previous lemma. \Box

Theorem 5.4 (Lovasz's Perfect Graph Theorem) For every graph G = (V, E), the following are equivalent.

- (i) G is perfect.
- (ii) P(G) is integral.
- (iii) \overline{G} is perfect.

Proof: It suffices to show (i) \Rightarrow (ii) \Rightarrow (iii), since $\overline{\overline{G}} = G$ then yields (iii) \Rightarrow (i).

(i) \Rightarrow (ii): To prove (ii), we shall show that $P(G) = P_I(G)$. Let $x \in P(G) \cap \mathbb{Q}^V$. Now it suffices to show $x \in P_I$. Choose a positive integer N so that $w = Nx \in \mathbb{Z}^V$, and consider the graph G_w . For every $i \in V$, let Y_i be the set of vertices in G_w which are equal to i or obtained by replicating i and let $\pi : V(G_w) \to V$ be given by the rule that $\pi(u) = i$ if $u \in Y_i$. Let \tilde{K} be a maximum size clique in G_w and let $K = \pi(\tilde{K})$. Then, K is a clique of G and further,

$$\omega(G_w) = |\tilde{K}| \le \sum_{i \in K} |Y_i| = w(K) = Nx(K) \le N$$

(here the last inequality follows from $x \in P(G)$). Since G_w is perfect, we may choose a colouring of it with colour classes A_1, A_2, \ldots, A_N . Now, consider $\pi(A_1), \pi(A_2), \ldots, \pi(A_N)$.

This is a list of independent sets in G which use every vertex $i \in V$ exactly w(i) times. It follows from this that $x = \frac{1}{N}w = \frac{1}{N}\sum_{\ell=1}^{N} \iota_{\pi(A_{\ell})}$ so $x \in P_I$ as desired.

(ii) \Rightarrow (iii): It follows from Observation 5.1 that property (ii) holds for any subgraph obtained from G by deleting vertices. In light of this, it suffices to prove $\chi(\bar{G}) = \omega(\bar{G})$. We shall prove this by induction on |V|. As a base, observe that the result holds for the trivial graph. Let $\alpha = \alpha(G)$ be the size of the largest independent set in G. Since P(G) is integral (i.e. $P(G) = P_I(G)$), every vertex of P(G) is the incidence vector of an independent set. It follows from this that $F = P(G) \cap \{x \in \mathbb{R}^V : x^\top 1 = \alpha\}$ is a face of P(G). Consider a generic point x in the face F. There must be a constraint of the form $x(K) \leq 1$ which is tight for x (otherwise, the only tight constraints are nonnegativity constraints, and we could freely increase any positive coordinate of x while staying in P(G) - which is contradictory). Now the constraint $x(K) \leq 1$ must be tight for every point in F, and it follows that the clique K has nonempty intersection with every independent set of G of size α . This gives us a colouring of $\bar{G} \setminus K$ using $\omega(\bar{G}) - 1$ colours. Adding the set K (which is independent in \bar{G}) to this, gives us a colouring of \bar{G} using $\omega(\bar{G})$ colours, thus completing the proof. \Box

Lemma 5.5 If G is a perfect graph, then CN(G) is a perfect⁺ clutter.

Proof: Let G = (V, E), let $\mathcal{C} = CN(G)$, and let $w \in \mathbb{Z}_+^V$. To prove that \mathcal{C} is perfect⁺, it suffices to show that $\kappa_w(\mathcal{C}) = \alpha_w(\mathcal{C})$. It follows from Theorem 5.4 that \overline{G} is perfect, and then by Lemma 5.3 that $(\overline{G})_w$ is perfect. Thus we have

$$\kappa_w(\mathcal{C}) = \chi((\bar{G})_w) = \omega((\bar{G})_w) = \alpha_w(\mathcal{C})$$

which completes the proof. \Box

Theorem 5.6 (Lovasz) The following are equivalent for a clutter C.

- (i) C is perfect.
- (ii) C is perfect⁺.
- (iii) C = CN(G) for a perfect graph G.

Proof: We shall show (i) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i). For (i) \Rightarrow (ii), note that by Theorem 2.15, \mathcal{C} perfect implies that $\mathcal{C} = CN(G)$ for a graph G. Since P(G) is precisely the covering polyhedron of \mathcal{C} , it follows that P(G) must be integral, and then by Theorem 5.4 that G is perfect. The previous lemma immediately yields (iii) \Rightarrow (ii). Finally, (ii) \Rightarrow (i) is given by Corollary 3.7. \Box

Theorem 5.7 (Chudnovsky, Robertson, Seymour, Thomas) A graph G is perfect if and only if G has no induced subgraph isomorphic to an odd cycle of length ≥ 5 or the complement of such a graph.

Note: This famous theorem (usually called the Strong Perfect Graph Theorem) gives us a precise (and very useful) characterization of exactly which clutters are perfect.