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Abstract

Let F be a finite field with pc elements, let A be a n×n matrix over F , and let k be a

positive integer. When is it true that for all X1, . . . , Xn ⊆ F with |Xi| = k+1 and for all

Y1, . . . , Yn ⊆ F with |Yi| = k, there exist x ∈ X1×. . .×Xn and y ∈ (F \Y1)×. . .×(F \Yn)

such that Ax = y? It is trivial that A has this property for k = pc − 1 if det(A) 6= 0.

The permanent lemma of Noga Alon proves that if perm(A) 6= 0, then A has this

property for k = 1. We will present a theorem which generalizes both of these facts,

and then we will apply our theorem to prove “choosability” generalizations of Jaeger’s

4-flow and 8-flow theorems in Zk
p .

1 Introduction

Let F be a field. We define Mn×m(F ) to be the set of all n×m matrices with entries in F .

Let A ∈ Mn×m(F ), and let α = (α1, . . . , αm), β = (β1, . . . , βn) be sequences of nonnegative

integers. We will say that A is (α, β)-pliant if for all X1, . . . , Xm ⊆ F and Y1, . . . , Yn ⊆ F

with every |Xj| ≥ αj and |Yi| ≤ βi, there exists a vector x ∈ X1 × X2 × . . . × Xm and a

vector y ∈ (F \ Y1) × (F \ Y2) × . . . × (F \ Yn) such that Ax = y. If α = (a, a, . . . a) and
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β = (b, b, . . . b), then we will say that A is (a, b)-pliant. If A is (a + 1, a)-pliant, we will say

that A is a-pliant.

Note that any matrix A is 0-pliant. Also, note that if |F | = pc and m = n, then A

is (pc − 1)-pliant if and only if A is invertible. If α′ = (α′1, . . . , α
′
m) and β′ = (β′1, . . . , β

′
n)

are sequences of nonnegative integers, with α′j ≥ αj for all 1 ≤ j ≤ m and β′i ≤ βi for all

1 ≤ i ≤ n, then A is (α, β)-pliant implies that A is (α′, β′)-pliant.

The following theorem of Noga Alon ([1]) is refered to as the permanent lemma. It has

many diverse applications in combinatorics. Our main theorem is a generalization of this

theorem.

Lemma 1.1 (Alon’s permanent lemma [1]) Let F be an arbitrary field, and let A ∈
Mn×n(F ) be such that perm(A) 6= 0. Then A is 1-pliant.

The following conjecture of Jaeger also concerns a solution to the equation Ax = y with

coordinate-wise restrictions on x and y.

Conjecture 1.2 (Jaeger) For any field F with |F | > 3, and any A ∈ Mn×n(F ), if A is

invertible then there exist x = (x1, . . . , xn) ∈ F n and y = (y1, . . . , yn) ∈ F n such that Ax = y,

and such that xi 6= 0 6= yi for 1 ≤ i ≤ n.

Using the permanent lemma, Alon and Tarsi ([4]) proved that any invertible matrix over

a field of characteristic p > 0 is (p, 1)-pliant. It follows from this that Jaeger’s conjecture is

true for all fields not of prime order. The following corollary of our main theorem strengthens

this result (in particular, we prove that any such matrix is (p− 1)-pliant).

Corollary 1.3 Let F be a field of characteristic p > 0, and let A ∈Mn×n(F ) be invertible.

If k = wtp
t + . . . w1p + w0, where wi ∈ {0, p− 1} for all 0 ≤ i ≤ t, then A is k-pliant.

Let p be a prime. For the vector space Zn
p , an additive basis B is a multiset of elements

from Zn
p such that for all v ∈ Zn

p , there is a subset of B which sums to v. If a matrix

A ∈ Mn×m(Zp) is (2, p − 1) − pliant, then the multiset of columns of A is an additive

basis (of Zn
p ). The following conjecture about additive bases (if true) would have very useful

consequences. In particular, for some k, it would establish the existence of a nowhere-zero

3-flow in any k-edge-connected graph.
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Conjecture 1.4 (Jaeger, Linial, Payan, Tarsi [8]) For every prime p, there is a con-

stant c(p) such that the union (as multisets) of any c(p) bases of Zn
p contains an additive

basis.

A second conjecture is that we may take c(p) = p in Conjecture 1.4. It is known that the

union of any d(p− 1)loge(n)e + p− 2 bases contains an additive basis. This was proved by

Alon, Linial, and Meshulam ([3]) with the help of the permanent lemma.

In the last section, we will apply the main theorem to prove generalizations of Jaeger’s

4-flow and 8-flow theorems (see [7]). For Zk
2 , we have the following results:

Corollary 1.5 Let G be a 4-edge-connected graph, and for every edge e ∈ E(G), let `e ⊆ Zk
2

with |`e| ≥ 2k−1 + 1. Then there exists a flow φ : E(G) → Zk
2 such that φ(e) ∈ `e for all

e ∈ E(G).

Corollary 1.6 Let G be a 3-edge-connected graph, and for every edge e ∈ E(G), let `e ⊆ Zk
2

with |`e| ≥ 2k−1 + 2k−2 + 1. Then there exists a flow φ : E(G) → Zk
2 such that φ(e) ∈ `e for

all e ∈ E(G).

2 Matrix Choosability

In this section, we will prove our main theorem. Like the proof of the permanent lemma,

our proof will require a theorem of Alon and Tarsi called the combinatorial nullstellensatz

(see e.g. [1]).

Let q = q(z1, . . . , zn) be a polynomial in F [z1, . . . , zn]. For any nonnegative integers

d1, . . . , dn, we will let [q]
z

d1
1 z

d2
2 ...zdn

n
denote the coefficient of zd1

1 zd2
2 . . . zdn

n in the expansion of

q.

Theorem 2.1 (Alon and Tarsi’s combinatorial nullstellensatz [1]) Let F be an arbi-

trary field and let q = q(z1, . . . , zn) ∈ F [z1, . . . , zn]. Suppose deg(q) =
∑n

i=1 di where each

di is a nonnegative integer and [q]
z

d1
1 z

d2
2 ...zdn

n
6= 0. Then, if S1, . . . , Sn are subsets of F with

|Si| > di for each i, there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn such that q(s1, . . . sn) 6= 0.
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Now, we will require a generalization of the permanent. We will let Jk denote the k × k

matrix of ones. Let F be a field of characteristic p, let A = (aij) ∈ Mn×n(F ), and let k be

a nonnegative integer such that either p = 0 or k < p. Then, we define:

Pk(A) =
1

(k!)n
perm




a11Jk a12Jk . . . a1nJk

a21Jk a22Jk . . . a2nJk

...
... · ...

an1Jk an1Jk . . . annJk




Note that P0(A) = 1 and that P1(A) = perm(A).

Let A be a matrix with index set I × J , and let I ′ ⊆ I and J ′ ⊆ J . Then we will let

A[I ′|J ′] denote the matrix formed from A by deleting the rows with indices in I \ I ′ and

deleting the columns with indices in J \ J ′. If S ⊆ {1, . . . , n}, we will let χn
S denote the

characteristic vector of S (of length n).

Throughout the rest of this section, except where noted, F will be a field of characteristic

p > 0. Our main result is the following theorem:

Theorem 2.2 Let A ∈ Mn×m(F ), and let w0, . . . wt ∈ {0, . . . , p − 1}. Let I0, . . . , It ⊆
{1, . . . , n}, J0, . . . , Jt ⊆ {1, . . . ,m} be such that |Ik| = |Jk| and Pwk

(A[Ik|Jk]) 6= 0 for all

0 ≤ k ≤ t. Then A is (α, β)-pliant where α = (1, 1, . . . , 1) +
∑t

k=0(wkp
k)χm

Jk
and β =

∑t
k=0(wkp

k)χn
Ik

.

If m = n, then setting I0, . . . , It = {1, . . . , n} = J0, . . . , Jt, we have:

Corollary 2.3 Let A ∈Mn×n(F ), and let k = wtp
t + . . . w1p + w0 with wi ∈ {0, . . . , p− 1}

for 0 ≤ i ≤ t. If Pwi
(A) 6= 0 for all 0 ≤ i ≤ t, then A is k-pliant.

The following corollary is a generalization of the permanent lemma of Alon for finite fields.

It follows immediately from the previous corollary, since P0(A) = 1 and P1(A) = perm(A).

Corollary 2.4 Let A ∈ Mn×n(F ) be such that perm(A) 6= 0. If k = wtp
t + . . . w1p + w0,

where wi ∈ {0, 1} for all 0 ≤ i ≤ t, then A is k-pliant.

If p = 2, then det(A) = perm(A), so by the previous corollary, we have:
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Corollary 2.5 Let F be a field of characteristic 2 and let A ∈Mn×n(F ) be invertible. Then

A is k-pliant for any k ≥ 0.

We will give a proof of the following lemma in the next section.

Lemma 2.6 (Alon, Linial, Meshulam [3]) If A ∈Mn×n(F ), then Pp−1(A) = det(A)p−1.

Corollary 1.3 (restated for convenience) now follows from Corollary 2.3, since P0(A) = 1

and Pp−1(A) = det(A)p−1.

Corollary 1.3 Let A ∈ Mn×n(F ) be invertible. If k = wtp
t + . . . w1p + w0, where wi ∈

{0, p− 1} for all 0 ≤ i ≤ t, then A is k-pliant.

Corollary 2.7 Let A ∈ Mn×m(F ). Suppose that there exist S1, S2 ⊆ {1, . . . , m} such that

A[{1, . . . , n}|Si] is invertible for i = 1, 2, and such that S1 ∩ S2 = ∅. Then for any t > 1, we

have that A is ((p− 1)pt−1 + 1, pt − 1)-pliant.

Proof: Let w0, . . . , wt−1 = p − 1. Then set I0, . . . , It−1 = {1, . . . , n}, set Jt−1 = S1, set

J0, . . . , Jt−2 = S2, and apply Theorem 2.2. This gives us a pair of sequences (α, β) such that

A is (α, β)-pliant. The corollary follows easily from the fact that αj ≤ (p− 1)pt−1 + 1 for all

1 ≤ j ≤ m and βi = pt − 1 for all 1 ≤ i ≤ n. 2

Corollary 2.8 Let A ∈ Mn×m(F ). Suppose that there exist S1, S2, S3 ⊆ {1, . . . ,m} such

that A[{1, . . . , n}|Si] is invertible for i = 1, 2, 3 and such that S1∩S2∩S3 = ∅. Then for any

t > 2, we have that W is ((p− 1)(pt−1 + pt−2) + 1, pt − 1)-pliant.

Proof: Let w0, . . . , wt−1 = p − 1. Then set I0, . . . , It−1 = {1, . . . , n}, set Jt−1 = S1, set

Jt−2 = S2, set J0, . . . , Jt−3 = S3, and apply Theorem 2.2. This gives us a pair of sequences

(α, β) such that A is (α, β)-pliant. The corollary follows easily from the fact that αj ≤
(p− 1)(pt−1 + pt−2) + 1 for all 1 ≤ j ≤ m and βi = pt − 1 for all 1 ≤ i ≤ n. 2

The proof of Theorem 2.2 also extends to fields of characteristic zero, but the results here

are most interesting for n× n matrices.

Theorem 2.9 Let F be a field of characteristic zero, and let A ∈ Mn×n(F ). If Pk(A) 6= 0,

then A is k-pliant.
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The following corollary follows immediately from the above theorem. This corollary also

has an elementary combinatorial proof.

Corollary 2.10 Let F be a field of characteristic zero, and let A ∈Mn×n(F ) be nonnegative.

If perm(A) 6= 0 , then A is k-pliant for any k ≥ 0.

Now, we will proceed with the proofs of this section. First we will prove two lemmas and

then we will use these lemmas to prove the main theorem.

We define T k
n to be the set of all n × n matrices with nonnegative integer entries and

with the additional property that the entries in each row and column sum to k.

Lemma 2.11 If A = (aij) ∈Mn×n(F ) then

Pk(A) = (k!)n
∑

(tij)∈T k
n

∏

1≤i,j≤n

(aij)
tij

tij!

Proof: Let

B = (bgh) =




a11Jk . . . a1nJk

... · ...

an1Jk . . . annJk




By definition, Pk(A) = 1/(k!)nperm(B). Consider the terms in the expansion of perm(B).

All of the terms in this expansion are of the form at11
11 . . . at1n

1n at21
21 . . . atnn

nn for some (tij) ∈ T k
n .

Now, for a fixed (tij) ∈ T k
n , we will count the number of times the term at11

11 . . . at1n
1n at21

21 . . . atnn
nn

appears in this expansion. In other words, we will count the number of ways we can choose an

nk × nk permutation matrix R = (rgh) such that
∏

1≤g,h≤nk(bgh)
rgh = at11

11 . . . at1n
1n at21

21 . . . atnn
nn

. To do this, we will choose the permutation matrix in stages. First, we will choose for each

column h the aij such that
∏

1≤g≤nk(bgh)
rgh = aij. This can be done in

∏n
j=1

(
k

t1j ,t2j ,...,tnj

)
ways.

Now, independently we may choose for each row g the aij such that
∏

1≤h≤nk(bgh)
rgh = aij.

This can be done in
∏n

i=1

(
k

ti1,ti2,...,tin

)
ways. Now, for each aij, we have chosen a tij × tij

submatrix of the aijIk submatrix of B, and we need to choose exactly one element from each

row and column of these submatrices to specify the permutation matrix completely. This

gives us an additional factor of
∏

1≤i,j≤n tij!. Thus, the term at11
11 . . . at1n

1n at21
21 . . . atnn

nn occurs

exactly (k!)2n ∏
1≤i,j≤n 1/tij! ways, which completes the proof. 2
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For every sequence of nonnegative integers γ = (γ1, . . . , γn), and any n × m matrix

A = (aij), we define the polynomial

Θγ,A = Θγ,A(z1, . . . , zm) =
n∏

i=1

(ai1z1 + ai2z2 + . . . + aimzm)γi

Lemma 2.12 Let F be a field of characteristic p, and let A ∈ Mn×n(F ). Let k be an

integer, and assume that either p = 0 or k < p. Then, if γ = (k, k, . . . , k) ∈ Zn, we have

[Θγ,A]zk
1 zk

2 ...zk
n

= Pk(A).

Proof: For 1 ≤ i ≤ n, we have that qi = (ai1z1 + ai2z2 + . . . + aimzm)k is a homogeneous

polynomial of degree k. If d1, . . . , dn are nonnegative integers and
∑n

i=1 di = k, then the

coefficient of zd1
1 zd2

2 . . . zdn
n in the expansion of qi is precisely

(
k

d1,d2,...,dn

)
ad1

i1 ad2
i2 . . . adm

im . Thus,

we can expand [Θγ,A]zk
1 ...zk

n
as follows:

[Θγ,A]zk
1 ...zk

n
=

∑

(tij)∈T k
n

n∏

i=1

(
k

ti1, ti2, . . . , tin

)
(ati1

i1 ati2
i2 . . . atim

im ) = Pk(A)

2

Proof of Theorem 2.2: Let F be a field of characteristic p > 0, let A ∈ Mn×m(F ), let

w0, . . . , wt ∈ {0, . . . , p − 1}, and let I0, . . . , It ⊆ {1, . . . , n}, J0, . . . , Jt ⊆ {1, . . . ,m} be such

that |Ik| = |Jk| and Pwk
(A[Ik|Jk]) 6= 0 for all 0 ≤ k ≤ t. Now, define α =

∑t
k=0(wkp

k)χm
Jk

and

β =
∑t

k=0(wkp
k)χn

Ik
. Next, let X1, . . . , Xm ⊆ F and Y1, . . . , Yn ⊆ F be given, and assume

that |Xj| ≥ αj + 1 for all 1 ≤ j ≤ m and that |Yi| = βi for all 1 ≤ i ≤ n. It will suffice to

show that there exists x ∈ X1 ×X2 × . . .×Xm and y ∈ (F \ Y1)× (F \ Y2)× . . .× (F \ Yn)

such that Ax = y. Next we define a polynomial:

η = η(z1, . . . , zm) =
n∏

i=1

∏

u∈Yi

(ai1z1 + ai2z2 + . . . + aimzm − u)

Now, observe that η is not identically zero on X1 × X2 × . . . × Xm if and only if there

exists x ∈ X1 × X2 × . . . × Xm and y ∈ (F \ Y1) × (F \ Y2) × . . . × (F \ Yn) such that

Ax = y. Since deg(η) =
∑n

i=1 βi =
∑m

j=1 αj, by Theorem 1, it is enough to prove that

[η]zα1
1 z

α2
2 ...zαm

m
6= 0. Now, observe that since zα1

1 zα2
2 . . . zαm

m is a term of top degree, we have

that [η]zα1
1 z

α2
2 ...zαm

m
= [Θβ,A]zα1

1 z
α2
2 ...zαm

m
. By this equation, and by our hypothesis, to prove the

theorem, it will suffice to prove the following claim:
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Claim:

[Θβ,A]zα1
1 z

α2
2 ...zαm

m
=

t∏

k=0

(Pwk
(A[Ik|Jk]))

pk

We will prove the claim by induction on t. If t = −1, we have

[Θβ,A]zα1
1 z

α2
2 ...zαm

m
= 1 =

t∏

k=0

(Pwk
(A[Ik|Jk]))

pk

For the general case, let ` = |It| = |Jt|. For convenience, we will assume (without loss)

that Jt = {1, . . . , `}. Let α′ = α− (wtp
t)χm

Jt
, and let β′ = β − (wtp

t)χn
It
. Then we have

[Θβ,A]zα1
1 z

α2
2 ...zαm

m
= [Θβ′,A

∏

i∈It

(ai1z1 + ai2z2 + . . . + aimzm)wtpt

]zα1
1 z

α2
2 ...zαm

m

Now, consider the monomials in the expansion of q =
∏

i∈It
(ai1z1 + ai2z2 + . . . + aimzm)wtpt

.

Since F is a field of characteristic p, the degree of zj in a monomial in the expansion of q

will be a multiple of pt. Since
∑t−1

k=0 wkp
k < pt, and (α1, . . . , αm) =

∑t
k=1(wkp

k)χm
Jk

, the only

monomial in the expansion of q which can contribute to the coefficient of zα1
1 zα2

2 . . . zαm
m is

∏
j∈Jt

zwtpt

j = zwtpt

1 zwtpt

2 . . . zwtpt

` . Let γ = (wt, wt, . . . , wt) ∈ Z`, then

[Θβ,A]zα1
1 z

α2
2 ...zαm

m
= [Θβ′,A]

z
α′
1

1 z
α′
2

2 ...z
α′m
m

[
∏

i∈It

(ai1z1 + . . . + aimzm)wtpt

]
z

wtpt

1 z
wtpt

2 ...z
wtpt

`

=
t−1∏

k=0

(Pwk
(A[Ik|Jk]))

pk

([
∏

i∈It

(ai1z1 + . . . + ai`z`)
wt ]zwt

1 z
wt
2 ...z

wt
`

)pt

=
t−1∏

k=0

(Pwk
(A[Ik|Jk]))

pk

([Θγ,A[It|Jt]]zwt
1 ...z

wt
`

)pt

=
t−1∏

k=0

(Pwk
(A[Ik|Jk]))

pk

(Pwt(A[It|Jt]))
pt

=
t∏

k=0

(Pwk
(A[Ik|Jk]))

pk

2

3 Relating Generalized Permanents

Let p be a prime, and let W ∈Mn×n(Zp) be an invertible matrix. Then it is clear that W−1

is k-pliant if and only if W is (p− 1 − k)-pliant. Thus, it is natural to ask whether Pk(W )

and Pp−1−k(W
−1) are related. Indeed, this is the case. Our main theorem of this section is

the following:
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Theorem 3.1 Let F be a field of characteristic p > 0, and let W ∈Mn×n(F ) be invertible.

Then

Pk(W
−1) =

Pp−1−k(W )

det(W )p−1

To prove our main theorem, we will need to consider another permanent-type function

p(·). Matrices which evaluate to a nonzero element under p(·) are of independent interest,

so we will mention a couple of conjectures concerning them.

For convenience, we will frequently use curly braces to help define our matrices. These

braces will always have the obvious connotation. If A ∈Mn×(p−1)n(F ), let

p(A) = (−1)n perm




A

A
...

A








p− 1

Note that if W ∈ Mn×n(F ), then since (−1)n = 1/(p − 1)!n, we have that p[W . . .W︸ ︷︷ ︸
p−1

] =

Pp−1(W ).

Alon, Linial, and Meshulam have made the following conjecture, which would imply

Conjecture 1.4 (with c(p) = p) via the polynomial technique of the combinatorial nullstellen-

satz. Actually, this conjecture would also imply the stronger statement that if W1, . . . , Wp ∈
Mn×n(Zp) are invertible, then [W1W2 . . . Wp] is (2, p− 1)-pliant.

Conjecture 3.2 (Alon, Linial, Meshulam [3]) Let A = [W1W2 . . . Wp] ∈ Mn×pn(Zp),

and assume that Wi is invertible for 1 ≤ i ≤ p. Then there exists a n× (p− 1)n submatrix

B of A such that p(B) 6= 0.

Jeff Kahn has made the following conjecture about permanents, which would imply Con-

jecture 1.2:

Conjecture 3.3 (Kahn [11]) Let F be an arbitrary field, and let W ∈ Mn×n(F ) be in-

vertible. Then there is an n× n submatrix W ′ of [WW ] such that perm(W ′) 6= 0.
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The following conjecture seems to be a natural extension of Conjecture 3.2. If true,

this conjecture would imply that if |F | = pc and W1, . . . ,Wp ∈ Mn×n(F ) are invertible,

then [W1W2 . . . Wp] is (pc−1 + 1, pc − 1)-pliant. This conjecture would also imply Kahn’s

Conjecture 3.3 for finite fields (apply to [W>W>In . . . In]).

Conjecture 3.4 Let F be a field of characteristic p > 0, and let A = [W1W2 . . .Wp] ∈
Mn×pn(F ). If Wi is invertible for 1 ≤ i ≤ p, then we may partition the columns of A into

two matricies B ∈Mn×(p−1)n(F ) and V ∈Mn×n(F ) so that p(B) 6= 0 6= det(V ).

Now, we will proceed with the proofs of this section. First, we will prove a simple

lemma concerning permanents of matrices over finite fields. We will use this lemma to prove

Lemma 2.6. Then, we will use Lemma 2.6 to prove a theorem which gives us a change of

basis formula for p(·). Finally, we will apply this theorem to give the main result, Theorem

3.1. Throughout the rest of this section, F will always be a field of characteristic p > 0.

Lemma 3.5 Let A = (aij) ∈ Mn×n(F ). If A has p columns which are identical, then

perm(A) = 0.

This lemma is a simple fact which has been observed by several authors. We include the

proof here for the sake of completeness.

Proof: We assume that the last p columns of A are identical, and let J = {1, . . . , n− p}. If

we expand the last p columns of A, we have

perm(A) =
∑

I⊆{1,...,n};|I|=n−p

perm(A[I|J ]) (p!)
∏

i∈{1,...,n}\I
(ain) = 0

2

Proof of Lemma 2.6: Let W = (wij) ∈ Mn×n(F ) be given. If A ∈ Mn×n(F ), then

perm(A) is a multilinear function with respect to the columns of A, and perm(A) vanishes

if A has p identical columns. Thus, if A has a set of p − 1 identical columns, adding a

multiple of one of these columns to a column of A outside this set, gives us a new matrix

A′ such that perm(A′) = perm(A). We will call this a characteristic p column operation.

Now, we may choose a matrix C = (cij) ∈ Mn×n(F ) such that W may be transformed

into C by (ordinary) elementary column operations and such that CR is lower triangular for
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some permutation matrix R. Then, by characteristic p column operations (each operation

we perform to a column is performed on all p− 1 copies of it), we have

Pp−1(W ) =
1

(p− 1)!n
perm




w11Jp−1 . . . w1nJp−1

... · ...

wn1Jp−1 . . . wnnJp−1




=
1

(p− 1)!n
perm




c11Jp−1 . . . c1nJp−1

... · ...

cn1Jp−1 . . . cnnJp−1




= det(C)p−1 = det(W )p−1

2

Theorem 3.6 Let A ∈ Mn×(p−1)n(F ), and let W ∈ Mn×n(F ) be given. Then p(WA) =

det(W )p−1p(A).

Proof: Since both sides of the equation p(WA) = det(W )p−1p(A) are multilinear in the

columns of A, it will suffice to prove the theorem in the case when A is a 0,1 matrix, and

each column of A contains exactly one entry which is a 1. If we can permute the columns of

A to obtain the matrix [InIn . . . In], then

p(WA) = p([WW . . . W ]) = Pp−1(W ) = det(W )p−1Pp−1(In) = det(W )p−1p(A)

Otherwise, A must have one column which occurs p times, so we find p(WA) = 0 =

det(W )p−1p(A). 2

Lemma 3.7 if W = (wij) ∈Mn×n(F ), then p[In . . . In︸ ︷︷ ︸
p−1−k

W . . . W︸ ︷︷ ︸
k

] = Pk(W ).

Proof: Let J ′ denote the (p−1)×(p−1−k) matrix of ones, and let J ′′ denote the (p−1)×k

matrix of ones. Then the matrix



In . . . In

... · ...

In . . . In

W . . . W
... · ...

W . . . W








p− 1

︸ ︷︷ ︸
p−1−k

︸ ︷︷ ︸
k
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may be transformed into the following matrix by permuting rows and columns

A =




J ′

J ′
0

w11J
′′ w12J

′′

w21J
′′ w22J

′′
. . . w1nJ

′′

. . . w2nJ
′′

0
. . .

J ′

...
...

wn1J
′′ wn2J

′′
· ...

. . . wnnJ
′′




It follows that p[In . . . In︸ ︷︷ ︸
p−1−k

W . . .W︸ ︷︷ ︸
k

] = (−1)nperm(A). If we expand perm(A) along the first

p−1−k columns, we find that perm(A) = (p−1)(p−2) . . . (k +1)perm(A′), where A′ is the

matrix obtained from A by deleting the first p− 1− k rows and deleting the first p− 1− k

columns. Repeating this operation, until the first n(p− 1− k) columns are deleted, we find

that

perm(A) = ((p− 1)(p− 2) . . . (k + 1))nperm




w11Jk . . . w1nJk

... · ...

wn1Jk . . . wnnJk




Thus, we have:

p[In . . . In︸ ︷︷ ︸
p−1−k

W . . .W︸ ︷︷ ︸
k

] = (−1)nperm(A) =
1

(p− 1)!n
perm(A) = Pk(W )

2

Proof of Theorem 3.1: Let W ∈Mn×n(F ) be invertible. Then

Pp−1−k(W ) = p[In . . . In︸ ︷︷ ︸
k

W . . . W︸ ︷︷ ︸
p−1−k

]

= det(W )p−1p[W−1 . . . W−1
︸ ︷︷ ︸

k

In . . . In︸ ︷︷ ︸
p−1−k

]

= det(W )p−1Pk(W
−1)

2

The following corollary was first proved by G. Kogan and J.A. Makowsky ([9]). It is also

a special case of a theorem of Yang Yu ([11]). It follows immediately from the preceding

theorem, since perm(W ) = P1(W ).

Corollary 3.8 (Kogan and Makowsky [9]) Let F be a field of characteristic 3, and let

W ∈Mn×n(F ) be invertible. Then perm(W−1) = perm(W )/det(W )2.
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4 Zk
p Flows in Graphs

In this section, we will apply two of our corollaries to the main theorem to prove gener-

alizations of Jaeger’s 4-flow and 8-flow theorems (see [7]). We will follow Jaeger’s original

proofs by constructing trees whose edge sets have empty intersection. However, instead of

using these trees to route a flow, we will use them to apply a suitable corollary of our main

theorem.

Theorem 4.1 Let p be a prime, let G be a directed 3-edge-connected graph, and for every

e ∈ E(G), let `e ⊆ Zk
p , with |`e| ≥ (p − 1)(pk−1 + pk−2) + 1. Then, there exists a flow

φ : E(G) → Zk
p such that φ(e) ∈ `e for all e ∈ E(G).

Theorem 4.1 does not appear to be very sharp in general, but for p = 2, this theorem

is tight for k ≥ 2, and for any cubic graph H which is 3-edge-connected and not 3-edge-

colorable. More precisely, for any such cubic graph H, and any k ≥ 2, there exists an

assignment of lists `e ⊆ Zk
2 to each edge e ∈ E(H) such that |`e| = 2k−1 + 2k−2 and such

that no flow φ : E(H) → Zk
2 can satisfy φ(e) ∈ `e for all e ∈ E(H). The construction is

as follows: let L ⊆ Zk
2 be the set of all vectors v = (v1, . . . , vk) ∈ Zk

2 such that v1 = 1 or

v2 = 1, and let `e = L for all e ∈ E(H). Then, |`e| = 2k−1 + 2k−2 for all e ∈ E(H). Now, for

any flow φ : E(H) → Zk
2 , the restriction of φ to the first 2 coordinates of Zk

2 is also a flow.

Since H does not have a nowhere zero Z2 ×Z2 flow, for some edge e ∈ E(H), we must have

φ(e) 6∈ L = `e.

Proof of Theorem 4.1: Since the additive group of F = GF (pk) is isomorphic to Zk
p , we

may work in F . Thus, we will consider `e ⊆ F for all e ∈ E(G), and we will construct a flow

φ : E(G) → F . Choose u ∈ V (G) and let A be the matrix obtained from the V (G)× E(G)

incidence matrix of G by deleting the row corresponding to u.

Now, consider the graph G′ obtained by doubling every edge of G. This graph is 6-

edge-connected, so by a theorem of Nash-Williams ([10]), we may choose 3 edge-disjoint

spanning trees T ′
1, T

′
2, T

′
3 of G′. Let T1, T2, T3 denote the corresponding trees in G. Now,

A[V (G) \ {u}|E(Ti)] is invertible for i = 1, 2, 3 and E(T1) ∩ E(T2) ∩ E(T3) = ∅. Thus, by

Corollary 2.8, we have that A is ((p−1)(pk−1+pk−2)+1, pk−1)-pliant. Thus, we may choose

a vector x ∈ FE(G) such that xe ∈ `e for all e ∈ E(G) and such that Ax = 0. Define φ(e) = xe
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for all e ∈ E(G). For all v ∈ V (G) \ {u}, we have that
∑

e∈δ+(v) φ(e)−∑
e∈δ−(v) φ(e) = 0. It

follows that this condition also holds at u, and we conclude that φ is a flow. 2

Proof of Corollary 1.6: Set p = 2 in the above theorem. 2

Theorem 4.2 Let p be a prime, let G be a directed 4-edge-connected graph, and for every

e ∈ E(G), let `e ⊆ Zk
p , with |`e| ≥ (p− 1)pk−1 + 1. Then, there exists a flow φ : E(G) → Zk

p

such that φ(e) ∈ `e for all e ∈ E(G).

Again, this theorem does not seem to be very tight for general p, but for p = 2, the

theorem is tight in a very strong sense. Indeed, for p = 2, for any k ≥ 1, and for any

graph H with at least one non-loop edge, there is an assignment `e ⊆ Zk
2 for every edge

e ∈ E(H) such that |`e| = 2k−1 for every e ∈ E(H), and such that no flow φ : E(H) → Zk
2

can satisfy φ(e) ∈ `e for all e ∈ E(H). The construction is as follows: let L0 denote the

set of all vectors v = (v1, . . . , vk) ∈ Zk
2 such that v1 = 0, and let L1 denote the set of all

vectors v = (v1, . . . , vk) ∈ Zk
2 such that v1 = 1. Choose a non-loop edge f ∈ E(H) and let

`f = L1. For all other edges e ∈ E(H) \ {f}, let `e = L0. Now, for any flow φ : E(H) → Zk
2 ,

the restriction of φ to the first coordinate of Zk
2 is a flow. It follows that φ(e) 6∈ `e for some

e ∈ E(H).

Proof of Theorem 4.2: The proof of this theorem is essentially the same as that of the

preceeding theorem, so we will only mention the differences. Since G is 4-edge-connected, we

may choose 2 edge-disjoint spanning trees, T1, T2 of G. In the truncated adjacency matrix

A, we will then have A[V (G) \ {u}|E(Ti)] invertible for i = 1, 2. Since E(T1) ∩ E(T2) = ∅,
we may apply corollary 2.7 and proceed as above. 2

Proof of Corollary 1.5: Set p = 2 in the above theorem. 2
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